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Abstract 

This paper seeks to generalise one aspect of classical Krein theory for linear Hamiltonian systems 
by examining how the existence of a non-trivial, homogeneous, polynomial W of degree m _> 2 
with (Ax, VW(x)) ----- 0,x ~ ~u, affects the spectrum of a real linear transformation A on IR u. 
Amongst other things it is shown that (i) such a W exists if, and only if, the spectrum of A is linearly 
dependent over the natural numbers, and (ii) there exists such a W which is non-degenerate if, and 
only if, all the eigenvalues of A are imaginary and semi-simple. In classical Krein theory W is 
quadratic. Our enquiry is motivated by a theory of topological invariants for dynamical systems 
which have a first integral. Degenerate Hamiltonian systems are a special class where the present 
considerations are relevant. 

Keywords: Krein theory; Polynomial invariants; Degenerate Hamiltonian systems; Homotopy invariant; 
Flows with a first integral 
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1. Introduction 

Let B denote a real, symmetric,  non-singular matrix on E2n. From the classical theory 

of  linear Hamiltonian systems it is well-known (see [5,8,9]) that if A is any non-singular, 

real matrix and (Ax,  Bx)  = 0 for all x E E2,,, then ] = A B  I is skew-symmetric and the 

spectrum ~r(A) of  A = ] B  is closed under multiplication by - 1 .  Note that the condition 

(Ax, Bx)  = O,x ~ ~2n, means that the quadratic polynomial  V(x)  = ( B x , x )  is an 

invariant for the flow of  a Hamiltonian differential equation .f = Ax.  The purpose here is 

to generalise these classical results on the spectrum of  A by considering systems ~t = Ax 

with polynomial  invariants of  degree higher than two in ~N. Such systems need not be 

* Corresponding author. E-mail: jft@maths.bath.ac.uk. 

0393--0440/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved 
SSDI 0393-0440(95)00026-7 



100 E.N. Dancer, J.E Toland /Journal of Geometry and Physics 19 (1996) 9%122 

Hamiltonian, indeed N need not be even, though some of our results are new even when 
they are. If  f : ~N ~ •u and W : ~ s  __~ ~,  N > 2, are smooth functions with the 

property that 

'VW(x) ,  f ( x ) )  = O, x E A N, (1.1) 

tl n W, which is constant on solutions of  the ordinary differential equation 

dx( t )  f ( x ( t ) ) ,  t ~ ~, x(t)  ~ A N, (1.2) 
dt 

is called a first integral of  the flow defined by (1.2) or, equivalently, an invariant of f .  When 

0 is an equilibrium of  the flow and the Hessian B of W is non-singular, the effect on the 
spectrum of the non-singular matrix A = f ( 0 )  is covered by the classical theory because 

(Ax, Bx) ----- 0 for all x e NN and N must be even. However, in natural cases the Hessian is 

not invertible (see [4]). We therefore ask how inferences can be drawn from the existence 
of a more general function W satisfying (1.1). An example is the following result, part (a) 

of which is well-known (see [1]) and part (b) of  which is proved in [4, Section 2.2]. 

Proposi t ion 1.1. Suppose f (0) = O, A = f r  (0) : A N ~ ~N is invertible and (1.1) holds. 

(a) I f  W ~ 0 on a deleted neighbourhood of  O in R N then all the eigenvalues of  A are 
purely imaginary. 

(b) I f  V W  ~ 0 on a deleted neighbourhood of O in A N then N is even. I f  f '  (O) has no 

imaginary eigenvalues, then it has the same number of  eigenvalues with positive real 
part as with negative real part. 

2. The main results 

The focus is on the case f = A, when A is a real, linear transformation and W is a homo- 

geneous polynomial of  arbitrary degree. It is instructive to point out how this special case 
relates to the problem for general polynomial and real-analytic invariants, before discussing 
its theory in detail. 

Suppose in (1.1) that f(O) = 0 and that f ' (O)  : ~N ~ ~ N  has transformation matrix A. 
Then it follows from (1.1) that 

0 = l t in~(VW(tx ) , t - l f ( t x ) )  = (VW(O),Ax) ,  x c R N. 

If A is invertible it follows that VW(0)  = 0. Without supposing that A is invertible, suppose 
henceforth that VW(0)  = 0. It follows from (1.1) that 

0 = lim(t - j V W ( t x ) , t  -1 f ( t x ) )  -= D2W(O)(x, Ax)  = (Bx, Ax), x ~ ~N, (2.1) 
t$O 

where D m W(O), the mth derivative of W at 0, is a real, symmetric, m-linear form on ~N 

and the symmetric matrix B is the Hessian of W at 0. A differentiation with respect to x 
gives 

(Bx, A y ) + ( B y ,  Ax) = 0 ,  x , y  ~ N .  (2.2) 
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In particular, if y 6 ker(B) then A y ~  (range(B)) j- = ker(B) and so A is a linear 

transformation on ker(B). Now suppose m > 3 is the smallest natural number such that 

Dmw(o)(x ,x  . . . . .  x, .) 5~ 0 ~ (ker(B))* 

for some x ~ ker(B). This is equivalent to D m W(O) being non-zero on ker(B). (Here 

(ker(B))* denotes the dual space of  ker(B).) Then for all x 6 ker(B), 

0 ---- lim(t -m+l V W ( t x ) ,  t -1 f ( t x ) )  = lim t m+l D W ( t x ) ( t - l  f ( t x ) )  
t4.0 t$O 

l 
D m W ( x , x  . . . . .  x ,  Ax ) .  

- -  ( m  - 1 ) !  

Therefore if V is defined by V(x )  = D m W ( x , x  . . . . .  x) ,  x c ker(B), then A : ker(B) --+ 

ker(B) and (VV(x),  Ax)  = 0 for all x c ker(B). Thus the study of the general condition 

(1.1) leads naturally to the particular case when f is linear and W is a homogeneous 

polynomial of  degree m. At this stage it is appropriate to give some definitions [6]. 

By a polynomial on ~N is meant a function W : ~N ___+ ~ with the property that 

m 

W ( x + t y ) = E w e ( x , y ) t e ,  t 6 ~ ,  x , y ¢ ~  N, (2.3) 
£=0 

where we ~ ff~ is independent of  t. When Wm ~ 0 the polynomial is said to have degree m 

and if 

W ( t x )  ---- t m W ( x ) ,  x c ~N,  t ~ 0~, 

then W is said to be homogeneous of degree m. A homogeneous polynomial W of degree 

m is a polynomial invariant for an N x N matrix transformation A if, and only if, 

( V W ( x ) , A x )  = O, x ~ ~U. (2.4) 

Here ( , )  denotes the inner product o n  ~ N  relative to which V W is defined by the relation 

( V W ( x ) , y )  = D W ( x ) ( y ) ,  x , y  E ~U. 

Suppose throughout that A is a fixed real linear transformation on ff~N. An element ,k of  

(A) is said to be semi-simple if its algebraic and geometric multiplicities coincide and 

simple if it has algebraic multiplicity 1. There follows a summary of  our main conclusions. 

The result of  Theorem 4.2 is that A has a non-trivial, homogeneous, polynomial invariant 

of  degree m > 2 if, and only if, there exist m eigenvalues, X1 . . . . .  ~-m, of  A (not necessarily 

distinct) with 

m 

E ~-e = 0. (2.5) 
e=l 

In particular, or(A) is linearly independent over N (the natural numbers) if, and only if, 
A has no non-trivial homogeneous, polynomial invariant. This observation pertains to ho- 
mogeneous, polynomial invariants and not to homogeneous invariants in general. As the 
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following example shows, the smoothness assumption has more influence than might at 

first appear likely. 

Let N = 2 , 3  = (g ~) and W ( x , y )  ---- Ix lPlylq ,p ,q  > 1. Then W, which is Example. 
positively homogeneous of degree m = p 4- q, is a polynomial if, and only if, p and q are 

natural numbers. Also W is an invariant for A if, and only if, 

~p  4-/~q = 0. (2.6) 

Therefore if 13 < 0, a > 1 the matrix A has homogeneous invariants with any given order 
of  differentiability and invariants with any given degree of  homogeneity. By composing 

one of these invariants with a smooth, real-valued function which is zero, along with all 
its derivatives, at 0 we obtain a smooth invariant for A. But only when p,  q ~ N is there a 

homogeneous, polynomial invariant of  degree m --- p + q. Note that when p, q 6 ~,  (2.6) 
is the precise form which (2.5) takes in this example. 

Note also that if ic~ E a (A) ,  u ~ R, then a relation of the form (2.5) is obtained when m 
is even by putting )~e = ( - 1 )  eiot, 1 < ~ < m. Therefore, if A has an imaginary eigenvalue 

it has a non-trivial, homogeneous, polynomial invariant of every even degree. 
For convenience with notation, the word polynomial will be used to mean 'homogeneous 

polynomial ' ;  on a few occasions when this meaning is not intended we will refer to a 
'general polynomial ' ;  the adjective 'homogeneous '  may be included elsewhere, but only 
for emphasis. A polynomial W is said to be non-degenerate if, and only if, 

V W ( x )  ~ 0, X E RN\{0}. 

(The notion of a non-degenerate first integral, which coincides with requiring the Hessian 
to be invertible when W is quadratic, is central in the topological degree theory of [2-4].) 

We show in Theorem 4.6 that if A is non-singular then all its non-degenerate, polynomial 
invariants have even degree and N is even. Also A has a non-degenerate, polynomial invari- 

ant of  even degree m > 3 if, and only if, all its eigenvalues are imaginary and semi-simple 
(Theorem 4.5). This result is false in the classical case of  quadratic invariants (m ----- 2). For 
example, if A is a real, 2n x 2n, non-singular symmetric matrix and J is the usual symplectic 

matrix (° I /0)' then W ( x )  = (ax ,  x), x E ~2n, defines a non-degenerate, quadratic invari- 
ant for the matrix J A ,  if A is non-singular. However, the eigenvalues of  J A  are not, in all 
cases, imaginary. Note also that W(x) = (W(x))  2, x ~ R N, defines a polynomial invariant 
of  J A of degree 4, which is non-degenerate if, and only if, A is positive- or negative-definite. 
Therefore our result contains the classical one that when A is positive- or negative-definite 
all the eigenvalues of J A  are imaginary and semi-simple. Indeed, A has a non-degenerate 
polynomial invariant of  any degree m > 3 only if all its eigenvalues are imaginary and 
semi-simple (Theorem 4.6). 

An invariant W is called active if 

span lVW(x) :  x E ~N} ___ ~N. 
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If  W is an active, polynomial invariant of  degree m > 2 and ,kl 6 ~r(A), then there exist 

~2 . . . . .  )~m E a (A), not necessarily distinct, such that (2.5) holds (Theorem 4.3). In the case 

m = 2, an invariant W is active if, and only if, its Hessian B at 0 is non-singular. This result 

therefore includes the classical one that if there exists a non-singular symmetric matrix B 

with (Bx, Ax) = 0 for all x 6 •U, then or(A) is closed under multiplication by - 1. 

When a non-trivial, polynomial invariant fails to be active on ~U, it can control part of  

the spectrum of A, while having no influence on the rest. To see this, if W is a non-active, 
polynomial invariant for A let 

[]~U ~--- M ~3 M ± where M = span{VW(x):  x E ~U}, 

and w r i t e x = y + z 6 M @ M  ±,x  E ~ U .  T h e n f o r t  E ~ , y 6 M a n d z E M  ±, 

d 
dt W(y + tz) = (VW(y + tz), z) = O, 

whence, i f x = y + z E M ~ ) M  ±, 

W(x) = W(y).  

If  we write the vector VW(x)  = V W ( y  + z) as (VyW(y  + z), VzW(y  + z)), then 

V = W ( y + z ) = O  and V y W ( y + z ) = V y W ( y ) .  

Now with respect to the decomposition of  ~ N  = M @ M ±, let 

( A , I  AI2~ 
A---- \A2I A22]"  

Then (2.4), with x = y + z, has the form 

0 = (AI lY + AlZZ, VyW(y  + Z)) = (AllY + AI2z, VyW(y))  

and 

0 = (A21y + A22z, VzW(y  + z)). 

The second equality contains no information since V z W = 0. However, with z ---- 0 in the 

first, we find that 

(Ally ,  V y W ( y ) ) = O ,  y E M .  

In other words, WIM is a homogeneous, polynomial invariant for the matrix All, and W is 

active on M because M = span{VW(y) : y E M}. 

With y = O, the first equation gives 

(AI2z, VyW(y)) =O, y ~ M, z E M ±, 

which implies that A12 = 0, since M = span{VyW(y): y E M}. Hence 

(A,, o) 
A = ~A21 A22 ' 
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from which it follows that M ± is an invariant subspace of A and every eigenvalue of All 

is also an eigenvalue of A, with the same multiplicity. Note also that the degree of W 
restricted to M is the same as the degree of W on •N (because W(x) = W(y) where 

x = y + z 6 M ~ M±). Hence every eigenvalue of All is also an eigenvalue of A and is 
involved in a relationship (2.5) with (m - 1) eigenvalues of A which are also eigenvalues 

of All.  
Now we can regard the result following (2.2), that ker(B) is an invariant subspace for the 

operator A, as a special case of the present discussion in which M = range(B) and m = 2. 

Thus an inductive procedure for deciding how a general polynomial invariant W influences 

the spectrum of A emerges. At the mth step, the theory of this paper shows how the mth 
derivative of W, behaving as an active, homogeneous polynomial invariant, controls a part 

of a (A) (the part which coincides with the spectrum of A l 1 in the above analysis) while 
simultaneously defining a new invariant subspace M ± for A upon which higher derivatives 

of W influence the spectrum at the (m + 1)st step. If W denotes a real-analytic invariant of 

A, the whole spectrum of A is constrained by W in this way, except when W is identically 
zero on a subspace of R N. 

A polynomial is non-vanishing if W(x) ~ O,x ~ ~N\{0}. It is easy to see that, for 

homogeneous polynomials, non-vanishing =¢, non-degenerate =~, active, and so the results 

outlined above strengthen Proposition 1.1 in the case when W is a homogeneous polynomial. 
Indeed, there is a scale of hypotheses, reflecting the decreasing influence of the invariant 

W on tr (A), which can be described as follows: 

I l k :  D k W ( x ) ~ O  f o r a l l x ~ R N \ { 0 } ,  k = 0 , 1  . . . . .  m - 1 .  

Note that Hk with k = 0, 1, and m - 1 is equivalent to non-vanishing, non-degenerate and 
active, respectively and that Hk implies He if k < ~. 

The following example illustrates how much weaker are the implications for a non- 
singular transformation A of the existence of an active, as opposed to a non-degenerate, 
first integral. 

Example,  Let 

A = 0 - 2  

0 0 

and let W : ~4 ~ ~ be the cubic polynomial defined by 

W ( x )  ~-x2x4 - x 2 x 3  q-XlX2X4, x = (Xl,X2,X3,X4) ~_ ~4. 

Then 

2 2 +xlx2) V W ( x )  = ( x 2 x 4 ,  2 x 2 ( x 4  - -  x 3 )  -~- x 1 x 4 ,  - -  x 2 , x  2 

and it is easily checked that (VW(x),  Aa~) = 0, m e ~4. Now, to check that V is active, 
suppose that for some a c ~4, 
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(VW(a~),a) = 0  f o r a l l x  E ~4. 

Then for all ( x l , x 2 , x 3 , x 4 )  ~ ~4 ,  

0 : a l x 2 x 4  + 2a2x2(x4  - x3) + a 2 x l x 4  - a3x  2 + a4x  2 + a4x l x2 .  

The x l x 2  term gives a4 : 0; the x 2 term then gives a3 : 0; the XlX4 term gives a2 : 0 and 

the x2x4  term gives al = 0. Hence, span{VW(x) : a c E4} = [~4 and so V is active. 

Hence this non-singular, real transformation A has an active, polynomial invariant W 

of odd degree, its eigenvectors are all real and none of  them is semi-simple. If W were 

non-degenerate then its degree would be even and the eigenvalues of  A would be imaginary 

and semi-simple. From Theorem 4.4 it is easy to see that in this example the degree of  any 

polynomial invariant of  A is a multiple of  3. 

There follows a brief remark about the possibility of  more than one polynomial invariant. 

If  W1 and W2 are homogeneous polynomials, of  possibly different degrees ml,  me _> 2, they 

are s tr ic t ly  i n d e p e n d e n t  if {VWI (x), VWe(x)} is a linearly independent set for every x c 

It~S\ {0}. Note that if this is so then Wt and We are non-degenerate and m t and me are both 

even, or both odd (Theorem 4.6). Hence if W1 and W2 are polynomial invariants with degrees 

m > 3 then all the eigenvalues of  A are imaginary and semi-simple. We will prove amongst 

other things (Theorem 4.6) that if the eigenvalues of a non-singular, real transformation 

A with largest modulus are simple, then A does no t  have a strictly independent pair of  

polynomial invariants. This is an analogue of  Lemma 1.1 of  [3] which says that if A has 

a simple, imaginary eigenvalue it does not have a strictly independent pair of  quadratic, 

polynomial invariants. It is easy to see [4, Lemma 3.31, that if otVWl (X0) -]- flVW2(xO) = 

0, x0 6 II~N\{0} and W1 and W2 are polynomial invariants of  A, then o t V W l ( x ( t ) )  + 

~ V W 2 ( x ( t ) )  : 0 for all t c ~ when 

dx 
~ ( t )  : A x ( t ) ,  t c ~ ,  x(O) = xo. 

Such remarks about the non-existence of  strictly independent invariants is significant in 

the topological degree theory for flows with a first integral [2-4]. In the presence of  a pair 

of  strictly independent integrals the degree is trivial (see [3, p.570]). 

3.  P r e l i m i n a r i e s  

A function V : (cN)  m -+ C is said to be a complex m - l i n e a r  f o r m  on C N if for each 

~ { 1 . . . . .  m }  and zl . . . . .  ze -1 ,  z t+ l  . . . . .  Zm, the function 

z i ~ V ( z l ,  . . . , z t - l , z ,  ze+l . . . . .  Zm) is l inearoverC,  

and a complex m-linear form V is s y m m e t r i c  if 

V(Z1 . . . . .  Zm) : V(z~r(e) . . . . .  Za(m)), (7 u_ am, 
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where Sm denotes the group of permutations of m elements. A complex polynomial on C N 

is defined by (2.3) with t 6 C, x, y 6 C N. A polynomial or an m-linear form is said to 
be real if its value is real when its argument is real. Let Cm denote the complex space of 

all m-linear forms on C N and let Rm be the real space of real m-linear forms. Let Cam and 

Ram denote the corresponding spaces of symmetric forms. In [6] it is shown that the linear 

operator • defined by 

~ V ( z )  = V ( z  . . . . .  Z), V E C m, Z E C N, (3.1) 

is a surjection from Cm onto the space of complex, homogeneous polynomials of degree 
m, whose restriction to Cam is a bijection with the same range. The analogous statement for 

Rm, Ram and real, homogeneous polynomials follows by the same argument. Therefore, in 

considering real, homogeneous polynomial invariants W, there is no loss of generality in 

seeking W in the form ,~ V for some V in Ram. 

L e m m a  3.1. Suppose that W is a real, homogeneous polynomial of degree m. Then 
(a) W is active if, and only if, H m -  l holds; 
(b) W is non-degenerate if, and only if, HI  holds; 
(c) W is non-vanishing if, and only if, Ho holds. 

Proof Let W = • V, where V ~ Ram. 

(a). Suppose W is not active. Then there exists y e ~N\{0} such that 

( V W ( x ) , y ) = 0 ,  x c R  N. (3.2) 

Since W = E V and V is symmetric, (3.2) may be re-written as 

D W ( x ) ( y ) = - V ( x , x  . . . . .  x , y ) = O ,  x E ~ U .  

After differentiating (m - 1) times and using the symmetry of V, we find 

D m - l w ( y ) ( x l  . . . . .  Xm-1)  = V ( y , x l  . . . . .  X m - l )  = O, Xl . . . . .  Xm-I  E ~ N .  

(3.3) 

Since y ~: 0, we have proved that Hm-1 is false when W is not active. Conversely, if Hm-1  
is false then (3.3) holds for some non-zero y E NN. Putting Xl ---- x2 . . . . .  Xm-I ---- x 
we find that (3.2) holds and hence W is not active. This completes the proof of (a). 
(b),(c). These are both immediate from the definitions. [] 

Remark.  From (3.3) there follows the observation that Hk implies He when k </~. 

Suppose that a basis {el . . . . .  eu} C C N is closed under conjugation ({el  . . . . .  eN} = 

{el . . . . .  eN }, where - denotes the usual component-wise operation of complex conjugation 
in cN). Its dual basis {e~ . . . . .  e~v} for (CN) * is uniquely determined by the system of 
equations e*(ej) = 3ij, l < i , j  < N. If f c (cN) * , l e t 7  6 (C°)  * be defined by 
f ( z )  = f (2 ) , z  6 C u. Note that 
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e*(-gfj) = e*(ej) = 3ij. (3.4) 

Hence {e~ . . . . .  e N } is the dual basis of  {el . . . . .  eN } (which is also clearly a basis for C N). 

By uniqueness, {e i . . . . .  e~v } is also closed under the conjugation operation defined above 
on (cN)*.  Note that ~T _-7 : e / .  

Let Q denote the set of  all functions q which map { 1 . . . . .  m } into { 1 . . . . .  N}. If q 6 Q, 

let ~ E Q be defined by 

e~(j) = eq(j), 1 < j < m. (3.5) 

Note that, for any i, j ,  the definition o f ~  gives 

while 

eq(i)(ej) ~--- 1 if, and only if, ~(i)  = j ,  i.e. if, and only if, eq(i) : ej, 

eq(i) ( *  e.l) = e*q(i)(Tj) = 1 if, and only if, ~j = eq(i), i.e. if, and only if, ~(i)  = j .  

Hence it follows that 

e* * I < i < N .  q(i) ~- eq(i)' 

If q 6 Q, let Vq ECm be defined by 

m 

Vq(Zl . . . . .  Zm) : 1"1 eq(i)(Zi)" 
i=1  

Then 

m 

Vq(Zl . . . . .  Zm) -~- H (eq(i) (zi)) 
i=1  

m 

: I - I  eq(i)(-Zi)' 
i = 1  

m 

= U eq(i)(zi), 
i : 1  

Hence for any q E Q, 

Vq(Zl . . . . .  Zm) : V~-(Zl . . . . .  ~ m ) .  

by definition of eq(i)  

by (3.6). 

Theorem 3.2. 
(a) The set {Vq " q E Q} is a basis for  Cm and i f  V E Cm then 

V = y ~  olqVq, whereotq = V(eq(l),eq(2) . . . . .  eq(m)). 
q6Q 

(b) I f V  ~ Cm then V E Rm if, andonly i f ,  f o r a l l  (Zl . . . . .  Zm) E (cN)  m 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

V(zl  . . . . .  Zm) = V(~1 . . . . .  Zm)- (3.10) 
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(c) I f V  c Cm then (3.10) holds, if and only if, 

-~q = ot~ for all q E Q. (3.11) 

Proof 
(a) It is clear that for each q ~ Q the function Vq is in Cm. Suppose that qi, 1 < i < r, 

E i = I  oli Vqi = 0 C C m. are distinct elements of  Q and o¢ i E C ,  1 < i < r, are such that r 

Then since 

Vqi (eqjO), %(2) . . . . .  eqj(m)) >_ 0 

with equality if, and only if, i = j ,  it follows immediately that Ot i = 0 for all i, 1 < i < r. 

Thus {Vq : q ~ Q} is linearly independent. Now if V ECm and zi ~ C N, 1 < i < m, then 

zi = ~ - 1  ej (zi)ej, whence 

(N.~__I e~ ~ * ejl E V(Zl . . . . .  Zm) = V (zl)ej . . . . .  ej(zm) = ctqVq(Zl . . . . .  Zm). 
j = l  ] qcQ 

Hence {Vq " q ~ Q} spans Cm. This proves (a). 
(b) If  (Zl . . . . .  Zm) ~ (•N)m and (3.10) holds then it is immediate that V(zl . . . . .  Zm) 

R. Conversely, suppose that V (zl . . . . .  Zm) ~ R wherever (Zl . . . . .  Zm) ~ (RN) m. For this 
step only, let {el . . . . .  eN} be the standard basis of  •N over ~ (which is also a basis for C u 
over C and which is closed under conjugation). Then by (3.9), Uq is real for all q, q ----- 

and 

V(Zl . . . .  , Zm) : Z Olq Vq (Zl . . . . .  Zm) 
qEQ 

= E Otq V~'(Zl . . . . .  Zm) ,  by (3.8) 
q~Q 

= E ° l q V q ( Z l  . . . . .  z m )  ~--- V ( ~ I  . . . . .  Zm) .  
qEQ 

This proves (b). 
(c) As in part (a), let {el . . . . .  eN } be any basis of  C N which is closed under conjugation. 

If  (3.10) holds then 

Ot'-q = V(eq(1) . . . . .  eq(m)) = V(e-q( l )  . . . . .  eq-(-~) = V(e~-(l  ) . . . . .  e~-(m)) = o~-. 

Conversely, if (3.11) holds, then 

V(z l  . . . . .  Zm) ~- Z Olq Vq (Zl . . . . .  Zm) 
qEQ 

~- Z "~ Vq(Zl . . . . .  7~rn), 
qEQ 

- -  . . . . .  - e r a ) ,  

q~Q 

by (3.11) 

by (3.8) 
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~EQ 

. . . . .  Zm) ~--- V(Zl  . . . . .  f m ) .  

This proves (c) .  

If  A is a real, linear transformation on ~N and W is a real, polynomial  of  degree m such 

that 

( V W ( x ) , A x )  = O, x E R N, (3.12) 

suppose, without loss of  generality, that W = 27 V, V E R,~. Because V is symmetrical,  

(3.12) may be re-written as 

V ( x , x  . . . . .  x, Ax) = 0, x E ~N, (3.13) 

which, after differentiating m times, gives 

~-~V(x l , x2  . . . . .  Axe . . . . .  Xm)=O,  xe EI~ N, 1 < £  < m .  (3.14) 
e=l  

Therefore, because V is symmetric,  (3.13) and (3.14) are equivalent. But, when V is a 

general (not necessarily symmetric) element of  Rm, it remains the case that (3.14) implies 

(3.12) when W = 27V. 

Hence if V c Rm satisfies (3.14) and is non-trivial on the diagonal, {(x . . . . .  x) : x c 

~N} of  (~n)m then W = ~, V is a non-trivial, homogeneous, polynomial invariant for A 

of  degree m. Also, all homogeneous, polynomial invariants W of degree m of  A are in the 

form W = r V ,  V c R~n, where V satisfies (3.14). 

Now suppose that V c Rm satisfies (3.14) and let {e~ . . . . .  eu} be the standard basis for 

EN over E which is also a basis for CN over C. Then, forq c Q, letotq = V(eq(l) . . . . .  eqtm)) 

and for (zl . . . . .  Zm) E (cN)  m let 

V(ZI . . . . .  am) = Z OgqVq(Zl . . . . .  Zm). ( 3 .15 )  

qEQ 

IfXl . . . . .  Xm-1 E [~N and Zrn = Xm + iym ~ C N, then 

~-~ V(x~ . . . . .  Axe . . . . .  Xm-l,zm) 
g=l  

= ~ V(xl . . . . .  Axe . . . . .  Xm__l,Xm) + i V ( x j  . . . . .  Axe . . . . .  Xm l,Ym) = 0. 
e=l  

Now suppose that for some k < m - I, 

k 

y ~  V (xl . . . . .  Axe . . . . .  xk, Zk+l . . . . .  Zm) 
£=1 

+ ~ V(Xl . . . . .  x~,zk+l . . . . .  Aze . . . . .  Z m ) = 0 ,  
e = k + l  
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for all (xl . . . . .  xk, zk+l . . . . .  Zm) ~ (RN) k x (cN)  m-~. (We have just observed this when 

k = m - 1.) Then 

k - l  

E V (xl . . . . .  Axe . . . . .  xk -  |, Zk . . . . .  Zm) 

e----1 

m 

-}- E V(X1 . . . . .  X k - l , Z k  . . . . .  Aze . . . . .  Zm) 
e=k 

k 

= ~ V(x l  . . . . .  Axe . . . . .  Xk . . . . .  Zk+l . . . . .  Zm) 

e = l  

e = k + l  

+i [e =~-L~I 

V(Xl . . . . .  Xk, Zk+l . . . . .  Aze . . . . .  Zm) 

V (xl . . . . .  Axe . . . . .  Xk-1, Yk, Zk+l . . . . .  Zm) 

m 

+Z 
£ = k + l  

V (Xl . . . . .  Xk-1 ,  Yk, Zk+l . . . . .  AZg . . . . .  Zm)] 

Hence, by induction, (3.14) implies that 

m 

E V(Zl . . . . .  Azg . . . . .  Zm) : O, 
e = l  

z e E C  N, 1 < £ < m .  

= 0 .  

(3.16) 

Therefore any real V satisfying (3.14) can be extended to a complex V satisfying (3.16) and 

there is no loss of  generality in considering (3.16) for elements V of  R m from the outset. 
Now suppose that V ~ Rm is identically zero on the diagonal of  (RN) m. Then 

V (x , x  . . . . .  x)  = O,x ~ R N, and differentiation m times gives 

E V(xa(1),xa(2) . . . . .  Xa(m)) = O, Xl . . . . .  Xn E R N. (3.17) 
cr ~ Sm 

From this, it follows, by induction, that the extension of  V as an element of  Cm has the 

property that 

V ( x + i y ,  x + i y  . . . . .  x + i y ) = O ,  x + i y c C  N. 

Hence if V ~ Rm is zero on the diagonal of  (RN) m, then it is zero on the diagonal of  ( cN)  m . 

Also the degree of  E V is the same when regarded as a real or a complex polynomial. 

4. Polynomial invariants of real transformations 

Since A is real, tr(A) = {~l . . . . .  ~ - n }  is closed under conjugation and n < N. Now 
we introduce notation for a Jordan basis of  A. For each p, 1 < p < n, let ff be such that 

) ~  = Xp and let 
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ker()vpl - A) = span{fjP: 1 < j < n(p)},  (4.1a) 

where {fjP: 1 < j < n(p)} is a linearly independent set with fjP = fjP chosen as follows: 

for each p 6 {1 . . . . .  n}, let j E {1 . . . . .  n(p)} and let there exist {ePk : 1 < k < re(j,  p)}, 
the root vectors, satisfying 

ePl = V '  AePk+ 1 = )vPePk+ 1 + e P k '  1 < k  < m ( j , p ) - 1 ,  (4.1b) 

e p j, m(j. p) ([ Range()vpl - A), (4. lc) 

e~k = e P k ,  p E  {1 . . . . .  n}, j C {1 . . . . .  n(p)},  k E {1 . . . . .  m ( j , p ) } .  (4.1d) 

T h e n B =  {eJ~k: 1 < p <_n,l < j < n(p) ,  1 < k < m ( j , p ) }  is a basis of C u w h i c h  

is closed under conjugation relative to which A is in Jordan Normal Form. For convenience 

with notation later, let ek, p 0 = O. 
Now let 79 denote the set of  all functions P • {1 . . . . .  m - 1} -+  {1 . . . . .  n}. If P e 79 

let P ~ 79 be defined by )vT(e) = )vp(g.), 1 < £ _< m - 1. If P c 7 9 let J p  be the set of 

functions J o n  {1 . . . . .  m - 1} with J(g.) c {1,2 . . . . .  n(P(g))} ,  1 < £ < m - 1. 

If P 6 79 and J E J p  le t /C j, e denote those functions K on { 1 . . . . .  m - 1} with 

K(t~) 6 {1,2 . . . . .  m(J(g.), P(£))}. Finally, i f K  c / C  j.  p let Kg be defined by 

Ke(g') = {K(g ' )  if£ 5~ ( ' ,  
K ( e )  - 1 i f £  = g'.  

(Note that K has range in 1~ and Ke has range in N U {0}.) Let 

m - I  m - I  

IKI = y ~  K(g) ,  K E ] C j ,  p a n d t z p - - -  Z Lp(e). ( 4 . 2 )  

g = l  g = l  

Note that #>- = # p  because of  the definition of  P.  Let V ~ Rm and for P 6 7 9, J E 

J p ,  K 6 K T j  p l e t v  P , J ,  K E ( cN)  * be defined by 

1)pK(Z) . , ,  P ( I )  P ( 2 )  P ( m - 1 )  j, = v te j ( i ) ,K( l ) ,e j (2) ,K(2  ) . . . . .  e j(m_l) ,K(m_l) ,Z) ,  Z C C N. (4.3) 

Note that v P = 0 if Ke(£) = O. Since B is a basis for C N, the function V is known if J, Kg 
all of  the functionals v*" J, K are known. This is immediate by Theorem 3.2. Because of  the 

discussion in Section 3, to find a non-trivial, polynomial  invariant for A it is sufficient to 

find V ~ Rm such that V is non-trivial on the diagonal of  (~N)m and 

~'~ V(z l , z2 ,  Z i - l ,AZi ,Z i+l  . . . . .  Zm) = 0 f o r a l l  (Zl  . . . . .  Zm) E ( cN)  m. (4.4) 
i=1  

Let A* denote the conjugate of  A on ( cN)  * defined by (Az*)z = z*(Az) , z  c CN,z  * 

( cN)  *. Note that relative to the basis for ( cN)  * dual to B, the transformation matrix for A* 

is the transpose of  the Jordan Normal Form of  A. 



112 E.N. Dancer, J.E Toland/Journal of Geometry and Physics 19 (1996) 99-122 

T h e o r e m  4.1. Let V E Rm, P E 7 9, J E ~Jp and K e 1C j, p. l f (4 .4)  holds then 

(a) V~K(Z) = ve  K(-O = ve  , J, J, K (Z) ,  ( 4 . 5 )  

(b)  v P A*)  IKl+2-m, s, ~; e ke r (b tp I  - (4.6) 

rn--I 

(c) ( Izpl  -- A*)v~., K =- ~ vPJ, Kt" (4.7) 
~=1 

Hence, by (b), 

(d) v P = 0 if  txp ~- a ( a ) .  (4.8) J ,K 

Proof  
(a). By the definition of  P and (4.1) 

U - f f K ( Z ) : . .  P(1) e ( m - 1 )  
j ,  v[e j ( , ) ,  k(1) . . . . .  eJ(rn-,) ,  K ( m - l ) '  Z) 

. . P ( 1 )  P ( m - l )  - .  
= V~ej(1), K(I) . . . . .  eJ(m-1),  K (m-U 'Z ) '  by Theorem 3.2(b) 

= v e x  (~)" J, 

(b), (c). If  P ~ 79, J ~ J p ,  K c / C j ,  p and g c { 1,2 . . . .  , m - l } then 

A P(t) ~ _P(O • P(O (4.9) 
es(e), K(e) = ~'P(e)eJ(e), K(e) -P eJ(e), Kt(e)" 

(Recall the convention that e p = 0.) Therefore, from (4.4) with Zm = z ~ C N and k,O 
P(g) 1 < g < rn -- 1, we obtain ze : ej(e)" K(O' 

m-I  m--1 
~-p,t) vPK(z)+, Y ~  v P K t ( Z ) + V ~ . K ( A Z )  , ~" ~ C  N. 

g=l  ~=1 

This can be re-written as 

m--l  

(A* - IzeI)v~,  K + ~ oPge  ----- 0 E ( cN)  *, (4.10) 
~=1 

which proves (4.7). To complete the proof  let P ~ 79, J e J p  be fixed. We use induction 
m--I on IKI = ~ e = l  K(e) .  The inductive hypothesis is that 

V P A*)(IKI+2-m) J,t¢ 6 k e r ( t z e I -  i f m -  1 < [KI < k. 

Note first that when IKI = m - 1, K(e)  = 1 for all e. Hence Kt(e )  = 0 for all e and so 

(A* - t_tpI)v~, K = 0 by (4.10). Since IKI + 2 - rn = 1 in this case the result is proved 

w h e n k = m - 1 .  

Now suppose [K[ = k + 1. Then for all ~ either Ke ~ 1Cj, e and [Kel = k, or Kt(e )  = 0 

and v P = 0 by construction. It is now immediate,  by the induction hypothesis and (4.10), J, Ke 
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that vff. K E k e r ( # p I  - A*) k+3-m, and the result follows since k + 3 - m = Ig l  + 2 - m 

in this case. 

R e m a r k s .  First, note that specifying a particular P E 7:' is equivalent to picking a set of 

(m - l)  (not necessarily distinct) eigenvalues of  A, and the subsequent choice of  J de- 

notes the selection of  particular eigenvectors of  A corresponding to the eigenvalues already 

chosen. The system (4.7) is, in fact, a union of  uncoupled sub-systems, one for each pair 

(P ,  J ) ,  each sub-system being parametrized by K ~ /~g, p. Therefore, it is sufficient, and 

possibly more convenient, to consider each sub-system separately. 

Second, suppose that for a given (P,  J )  the corresponding sub-system of  (4.7) has a 

non-zero solution. We want to show that there is a solution of  the sub-system corresponding 

to (P ,  J )  so that (4.5) holds. If  P # P,  then (P ,  J )  and (P ,  J )  have distinct sub-systems in 

(4.7), K~j, p = / C j ,  T and it suffices to define vPj, K (z) to be v if, K (~')" It is immediate from 

the construction that this is a non-trivial solution of  the sub-system (4.7) for (P, J). The 

case P = P occurs if, and only if, ~.p(/~) is real for all £, 1 < £ < m - 1, in which case /~p 

is also real. Suppose {v~, K ' K E lug, e} is a given, non-zero solution of (4.7) for given 

(P ,  J ) .  Let 

tO P U P K(Z) + U P (7), Z E C N, j . K ( Z ) =  j, J.K 

for all K c tO j,  p. Then {w~, K" K 6 /C j ,  p} is a solution of  (4.5) and (4.7). If it is the zero 

solution, then for all K 6 KTj, p 

0 = tOP vP [~N. j , K ( X ) = 2 R e a l  j ,K(X),  X 6  

If this is so, note that {rjP K " K ~ ICj, p} is also a non-zero solution of (4.7) for given 

(P, J), where rPj. K = iv~ K" Now define w PJ,K using r PJ,K instead of v PJ,K to obtain a 

non-zero solution of  (4.5) and (4.7). 

In all cases, a non-zero solution of  (4.7) for given (P ,  J )  leads to a non-zero solution of 

(4.5) and (4.7). In Theorem 4.6 below it is shown that a solution of  (4.5), (4.7) is sufficient, 

as well as necessary, for the existence of  a solution V of  (4.4) in Rm. Whether V is non-zero 

on the diagonal determines whether there is a non-trivial, polynomial  invariant W of  A in the 

form W = E' V. If  however V is a non-trivial, symmetric solution of  (4.5) and (4.7), then V 

must be non-zero on the diagonal, for otherwise differentiating n times gives V = 0 E R~. 

By the ascent of  an operator A is meant inf{n 6 N U {0} : ker(A n) = ker(A "+l  )}. (Since 

A ° = I ,  the ascent of A is 0 if, and only if, A is injective.) If  # is an eigenvalue of  A then 

we will refer to the ascent of  ( # I  - A) as the ascent of  # .  By classical theory # has the 

same ascent as an eigenvalue of  A and of A*, and the ascent ot of the eigenvalues ~ and ~- 

of  a real transformation A are equal. Also,  for all # ~ C, 

ker( /z l  - A) ~ = U k e r ( # l  - A) k = ,A/'(ttl - A), 
kE[~ 

range ( / , I  - A)" = ["] range ( # I  - A) ~ = 7~(#I  - A), 
kEN 
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C t¢ = A/ '( /zl  - A) @ ~ ( / z I  - A), .N'( /zl  - A) C ~ ( 2 . I  - A) if2. # # ,  

and 

.A/'(/zl - A) fl.A/'(2.I - A) : {0} if2. # ~ .  

Recal l  that A is a real t ransformat ion and a basis  of  root  vectors  {e p k : 1 < p < n, 1 < j < 

n ( p ) ,  1 < k < m ( j ,  p)}, which  is c losed under  conjugat ion,  has been chosen for  C N. Let  7 ~ 

denote  the set o f / 3  : { 1, . . . ,  m } --+ { 1 . . . . .  n }, let , f ?  denote  the set of  J : { 1 . . . . .  m } --+ 

{ 1 . . . . .  n(/3)} and/Cj , /3  the set o f / ¢  : { 1 . . . . .  m} --+ { 1 . . . . .  m ( J , / 3 ) } .  Then,  by  T h e o r e m  

3.2, {Vf. /?-  /5 ~ 73, J 6 3 /3 , /<  E/C) , /3} is a b a s i s  for  Cm where  

m (e~(£) ^ , .  (z£). (4.11) V~j,/~(Z1, . . . , Z m )  : H \ J(e),K(O.I 
g=l 

With  respect  to this basis  an e lement  V E C,n has coefficient  aP~ defined by 

ot P~ ^ : V (e/3(') _/3(m-l) /3(m) /¢(m)) 
J ,K \ J(1),/¢(1) . . . . .  eJ(m- l ) , l¢ (m- l ) ' e j (m) ,  

_ up /' /3(rn) ) (4.12) 
- -  J , K  ~ e j ( m )  , K ( m )  ' 

where  here and later P ,  J ,  K deno te /3 ,  J a n d / ¢ ,  respectively,  restricted to { 1 . . . . .  m - 1 }. 
Therefore ,  if  {l~Pk • p 6 7 9, j E J p ,  K 6 )Us, p} is given,  a funct ion V E Cm is uniquely 

de te rmined  in terms of  the basis  (4.11) by  the coefficients (4.12). 
Now,  by  T h e o r e m  4.1, v P J, K ~ A f ( I z p I  - A*),  the general ised e igenspace  o f / . tp  as an 

eigenvalue of  A*, and 
^ 

e P(m) ^ E ./kf(2.p(m)l -- A) C 7g(2.I - A) 
J(m), K(m) 

for  any 2. C C\{2./3(m)}, where  T¢(2.I - A) denotes  the general ised range of  (~.I - A). In 

particular,  i f  ].tp # 2./3(m) then 

^ 

e P(m) ^ (7. 7E(Ixp1 -- A) .  
J(m), K(m) 

Since 

1) P J, K E .A/'(lzpl -- A*) and 

it is immedia te  that 

m-I 
/.p = _ ~ k~(e) 

j= l  

m 

a ~  ~ = 0 for  a l l /3  with ~ 2 . / 3 ( e )  # 0. (4.13) J ,K 
£=1 

T h e o r e m  4.2. A real, l inear transformation has a non-zero, homogeneous,  polynomial  

invariant o f  degree m if, and only if, there exist m eigenvalues, Ctl . . . . .  am, o f  A with 
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m 

Z ae = 0 .  
~=1 

Proof If  no set of  m eigenvalues of  A adds up to zero, then v e is zero for all P ,  J ,  K, J , K  
by Theorem 4.1(d). Therefore if V satisfies (4.4) then V - 0, by (4.13). Hence A has no 

non-zero, polynomial  invariant of  degree m, by the remark in italics preceding expression 

(3.15). 

Conversely, suppose a l  . . . . .  a m are eigenvalues of  A which add up to zero, and let 

fll . . . . .  tim' be the distinct elements of  {a 1 . . . . .  am }. If fl___j/is not real, let g* E ker(fii I - A* ). 

From the definition of  g* in Section 3, it follows that g* 6 ker( f l i I  - A*). If  fli is real, let 

* * Then * E ker(fli l - A) and gi w* c ker(fli I - A*) and let gi* = wi + wi" gi * = g~ when 
fli is real. Moreover, {g* " 1 < i < m'} is a linearly independent set in (cN)  * and hence 

there exists {gi : 1 < i < m'} C C N with g*(gj) = ~ij. 
Now let 

f *  * g = gi i f ae  = f l i ,  1 < i < m 

and define V E Cm by 

m m rn m 

. . . . .  

t = l  e = l  ~=1 g = l  

It is immediate,  from Theorem 3.2(b), that V E Rm. Moreover, for zl . . . . .  Zm E C N,  

m m 

E f ~ ( z , ) . . ,  f ~ ( A z e ) . . ,  f ; ( z m ) =  E fl*(Zl)""" ((A*f~)(Ze)). .  
~=1 g = l  

: " f m  (Zm ae fl*(Zl) •. * 
e=l 

Hence V satisfies (3.14). Now let 

m ~ 

z = E ge E C N. 
g= l  

Then V(z ,z  . . . . .  z) = 2. Now let 

W ( x ) =  V(x . . . . .  x), x c ~N. 

* Z f r o ( m )  

= 0 .  

Then W ~ 0, by the closing remark of  Section 3, and W is a homogeneous, polynomial  

invariant of  degree m of  A. [] 

R e m a r k .  In many cases when A has m eigenvalues which sum to zero there are at least two 

distinct (i.e. l inearly independent in the space of  real-valued functions on EN) polynomial  

invariants of  A. This follows from Theorem 4.7, which is the converse of  Theorem 4.1. But 

there are exceptions. For example, when there is only one set of  m eigenvalues which sums 
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to zero, each element of  which has geometric multiplicity one and all but one of  which is 

semi-simple,  then there is only one polynomial  invariant of  A. 

T h e o r e m  4.3. Suppose W is an active, polynomial  invariant o f  A o f  degree m > 2. I f  )q 

is an eigenvalue o f  A there exist m - 1 eigenvalues o f  A,  not necessarily distinct, such that 

m 

Z L £ = O .  
( = 1  

Proo f  Let W = E V ,  V 6 R~m . Let the basis {ePk} be chosen as in (4.1). Suppose that ~-1 

is an eigenvalue of  A with eigenvector e. Now, by the hypothesis that W is active, H k - 1  

holds and therefore v P j ,  x ( e )  # 0 for some P ~ 7 9, J E t ip ,  K ~ ICj, p. Suppose Zl # / z e .  

Then 

v P E . M ' ( # p l  -- A*) C T~(~.I - A*) = (A/'(ZI - A) )  ±. J ,K 

Hence U P j ,  K(e) = 0 which is a contradiction. Hence /zp  = )~1 which proves the result. [] 

For given ( J ,  P)  

K(£) < K(£) < K(£) ,  1 < £ < m - 1, K c K~j, p, 

where K ,  K 6 /C  j,  e are functions of  ( J ,  P )  defined by 

K(g.) = 1, K(£)  : m(J(g.) ,  P(£)) ,  1 < g. < m - 1. 

Theorem 4.1 says that ( I zp I  - A*)~Pvl], lc = 0, where c~p > 0 is the ascent o f / z p  as an 

eigenvalue of  A. This leads to the following theorem. 

Theorem 4.4, Let P ~ 7 9, J ~ J e  and suppose that 

(m - 1) + o r e  < IKI. 

Then v P = O. J,K_ 

Proo f  Let K ~ E/C L p be such that ]Kal = (m - 1) + u p .  Such K '~ exists by hypothesis. 

Then by (4.7) 

m - 1  

(l.l.pl - -  A*)VI~  K a Y ~  V P , = J, K~'  
£=1 

where either K~ (£) = 0 or I K~I = I Ka l  - 1. Hence, by induction, 

(#t"1 -- A*)C~PvI~,K~ = r VIL, K, 

where r is some positive integer. But v P J ,K E k e r ( / t e I  - A*), by Theorem 4.1(b), whence 
1) P y, K ~ ker( /ze I - A*)aP fq range(/zp I -- A*)de = {0}, by definition o f a p .  This completes 
the proof. [] 
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It is clear from the proof of  the preceding theorem that Eq. (4.7) forces many of  the 
vP J, K tO be zero, but it is difficult to give a more systematic statement of  a result in that 

direction. The significance of  (4.5) and (4.7) is that they give a necessary condition for (4.4). 
In Theorem 4.7 we will observe that this is also sufficient. 

Theorem 4.5. A linear transformation A has a non-degenerate, homogeneous, polynomial 

im'ariant W o f  even degree m >_ 4 if, and only if, it is diagonalisable and all its eigenvalues 

are imagina~. 

Proof  Suppose that the eigenvalues of  A, counted according to multiplicity, are ± ia t  . . . . .  

ictk, and possibly 0. Say ee = ae + ibe is an eigenvalue of icte, l < £ < k, and if necessary 

A J) = 0, j~ c ~N,  j = 2k + 1 . . . . .  N .  Then {ae, be , f j , 1 < ~ < k, 2k + 1 <_ j <_ N} is 

a basis for EN and we can choose an inner-product ( , )  relative to which it is orthonormal. 

Since Aae = -otebe and Abe = aeae for all £, 1 < ~ < k, there results that (Ax,  x) = 0, 
x c R N. Now for even m > 4, let W ( x )  = ( x , x )  m/2. Therefore, for y 6 E N  

( V W  (x),  y) = m ( x , x )  (m-2)/2 (x, y),  

whence 

V W ( x ) ~ 0 ,  xE[~N\{0}  and ( V W ( x ) , a x ) = 0 ,  x 6 R  u.  

Therefore W is a non-degenerate invariant for A which, by its definition, is clearly a homo- 

geneous polynomial of  even degree m > 4. 

For the converse, suppose that A has an eigenvalue with real part non-zero. Let fl denote 

the eigenvalue of  A whose real part has largest absolute value and let f 6 C N denote a 

corresponding eigenvector of  A. Then f is an eigenvector of  A with eigenvalue/~. (We 

do not exclude the possibility that fl is real and f = f . )  If  ~. is any eigenvalue of A and 

1 < k < m - l ,  

real(kfl + (m - 1 - k)¢~ + X) = (m - 1) real fl + real ~. ¢ 0 

since m > 2, because of  the choice of  ft. If W is a polynomial invariant of  A of  degree 

m :_> 4 let W ---- Z' V where V c R~. Therefore, if ~ 6 C u it follows from Theorem 4.1 (d) 

that 

V ( f  . . . . .  f , f  . . . . .  f , $ )  = 0 ,  

where f appears k times and f appears m - 1 - k times. It is now easy to infer from the 

multi-linearity of  V that 

V ( x , x  . . . . .  x , ~ )  = V ( y , y  . . . . .  y , $ )  = 0 

if f = x + iy, for $ c C N. Hence 

V ( x  . . . . .  x , z ) = V ( y  . . . . .  y,z)  = 0, Z E [ ~  N , 

whence VW(x)  ---- VW(y)  = 0, since W ---- Z'V. 
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This proves that if W is a non-degenerate, polynomial invariant of  A of  degree m > 2 

then all the eigenvalues of  A are purely imaginary. Now we must prove that they are semi- 

simple. Let iy be an eigenvalue of  A of  largest ascent, and let g = u + iv be a corresponding 

eigenvector. Suppose the ascent of  iy is ot >_ 2. Let P ~ P and J ~ J p  be chosen so that 

fork,  l < k  < m - 1  

)~P(e) = iy and 

~,p(£) : - i v  and 

ep(t) j(e),l = f ,  l < e < k ,  

eP(t) = f ,  k + l  < e < m - 1 .  
J(e), 1 

Note that since the ascent of  the eigenvalues iy and - i y  are equal, 

Ig l  = t~(m - 1). 

Moreover, ot is the largest ascent of  any eigenvalue of  A and hence either # p  -- 

(2k - m + 1)vi is not an eigenvalue of  A or it has ascent c~p < or. Since m > 3 and 

a > 2  

Igl  = ot(m - 1) = a + a ( m -  2) >_ up  + 2 ( m  - 2 )  > _ a p + m -  1. 

Therefore, by Theorem 4.3, for 1 < k < m - 1, 

V ( f  . . . . .  f , f  . . . . .  f , z ) = 0 ,  z e C  N, 

where f and f appear k and m - 1 - k times, respectively. The multi-linearity of  V now 
gives 

V(u . . . . .  u,z)  = V (v , v  . . . . .  v , z ) = 0 ,  z ~ ~ u. 

Therefore 

VW(u)  = VW(v)  = 0, 

since W = 27V, and this contradicts the non-degeneracy of  W. 
This completes the proof. [] 

Remarks .  The proof that when W is non-degenerate all the eigenvalues of A are purely 

imaginary generalises somewhat to yield a weaker result under weaker hypotheses: if W 
satisfies H ~  for some k < l m  and is a polynomial invariant of  A of  degree m, then all the 
eigenvalues of  A are imaginary. 

The next theorem has, as a special case, the result that i fa  non-zero, imaginary eigenvalue 

with largest absolute value of  a non-singular transformation A is simple, then A does not 
have a pair of  strictly independent first integrals of  any degree. Note that the hypotheses of  
parts (e), (f) below are not mutually exclusive. 

T h e o r e m  4.6. Suppose that A is a real, linear transformation on ~N. 

(a) I f  A has a non-degenerate, polynomial invariant of  any degree m > 3 then all its 
eigenvalues are imaginary and semi-simple. 
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(b) I f  A has a non-degenerate, polynomial invariant of odd degree m > 3, then A is singular. 
(c) Suppose A is non-singular and has a non-degenerate, polynomial invariant. Then N is 

even. 

(d) Each component of a strictly independent pair of homogeneous polynomials is non- 
degenerate and both have odd, or even, degrees. 

(e) IfO is a simple eigenvalue of A ~ O, then A does not have a strictly independent pair 

of polynomial invariants of odd degrees m > 3. 
(f) l f  +iy, V c ~, are the eigenvalues of A 5~ 0 of largest absolute value and are simple, 

then A does not have a strictly independent set of polynomial invariants of even degrees. 

Proof 
la) An examination of  the second half of  the proof of  Theorem 4.5 yields the required 

result if m > 3 is arbitrary. 

Ib) Let + i y  ~ 0 be the eigenvalues of A of  largest absolute value and suppose that A f  = 
i y f ,  where f = u + iv. (This is possible by part (a).) Then, for any k, 1 < k < m - 1, 

iky + i(m - 1 - k)(- i~/)  = i(2k - m + l )y  ~ - c r ( A )  

if 0 ~( a (A), since 2k - m + 1 is even for all k and iy is the eigenvalue of  largest absolute 

value. As in the proof of  Theorem 4.5, it follows that if N ---- 27 V, V 6 R~n, then 

g(bl, bt . . . . .  U,Z) = V(U,U . . . . .  U,Z) = 0 ,  .7, C C N. 

Hence V W (a) --- V W (v) = 0, which contradicts the non-degeneracy of  W. 

(c) Suppose A is non-singular and W is a non-degenerate, polynomial invariant for A. 

Then 

+ k A x + ( 1 - ~ . ) V W ( x )  5~0, x E ~N, Ilxl]= l, k E  [0,1], (4.14) 

because (VW(x),  Ax) ---- 0 ,x  ~ R N. Hence (4.14) defines an admissible homotopy for 

Brouwer degree on the unit ball I2. Hence 

deg(S2, A,0) = deg(~2, VW,0)  = deg(~2, - A,0). 

Since deg(I2, A, 0) = sign(Det A), this implies that N is even. 

(d) Suppose Wl, W2 is a strictly independent pair of  polynomials. Then 

) ~ V W I ( x ) + ( 1 - ~ , ) V W 2 ( x ) ¢ O ,  x C  I~N, Ilxll=l, ~[0,11.  (4.15) 

When k ---- 0, 1 we find that both Wl and W2 are non-degenerate. Also, (4.15) defines 
an admissible homotopy in the sense of  Brouwer degree on the unit ball I2 in ~N and 

consequently 

deg(~ ,  VWI, 0) = deg($2, VW2, 0). 

However, deg(I2, f ,  0), when it is defined, is odd for an odd function f ,  and even for an 
even, homogeneous function f [7, Ch. II, Theorem 4.1 and Ch. IV, Section 2]. Since VWt 
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is even when W1 is odd and vice versa for W2, this proves that WI and W2 both have odd, 

or even, degrees. 
(e) Suppose that W = 1; V, V e Rr~, is any non-degenerate, polynomial invariant of A 

of odd degree m > 3 and let 0 be a simple eigenvalue of  A with Au ----- 0, u E R u \ {0}. Since 

all the eigenvalues of A are imaginary, by part (a), let -t-iy be the eigenvalues of  largest 

absolute value and suppose A f  ---- i y f ,  f = a + ib. Then for any k, 1 < k < m - 1, 

kiy  + (m - 1 - k ) ( - i y )  E - t r (A) ,  

if, and only if, 2k -- m - l, since 2k - m + 1 is even and + i y  are the eigenvalues with 

largest absolute value. Therefore, if ~ is any generalised eigenvector of A corresponding to 

a non-zero eigenvalue we find, from (4.13), that 

V ( f  . . . . .  f , f  . . . . .  f , ~ )  = 0 ,  

where f and f appear k and m - 1 - k times, respectively. Hence, by the multi-linearity 

of V, 

V (a . . . . .  a, ~) = V (b . . . . .  b, ~) = 0 for all such ~. 

Therefore for all x in the real subspace which is invariant under A and complementary to 

span{u}, 

V(a ,a  . . . . .  a , x )  = ( V W ( a ) , x )  = O. 

In other words, V W ( a )  lies in a one-dimensional space determined by A. Since this is true 

for any polynomial invariant W of A of  odd degree, and since a 5~ 0 is independent of  W, 

the result is proved. 

(f) Suppose Wl and W2 form a strictly independent pair of  polynomial invariants of  even 

degree. If  both are quadratic then the result is proved in [3], Lemma 1.1. If  one of  them has 

higher degree then all the eigenvalues of A are imaginary and semi-simple. We suppose 

this to be the case henceforth and adopt the hypothesis that + i y ,  the eigenvalues of  largest 

absolute value, are simple. 

Suppose that A f  ~ iv  f ,  where f = u + iv. Then the choice of  iy means that 

kiy + (m - 1 - k ) ( - i y )  ¢' -c r (A)k{+iy} ,  k E 77. 

Let W = ,~ V, V ~ R~m, m >_ 2, be any non-degenerate, homogeneous, polynomial 
invariant of  even degree m of  A, and let ~ be any generalised eigenvector of  A corresponding 

to any eigenvalue of A other than q-i V. Then, by (4.1 3) 

v ( U  . . . . .  f , f  . . . . .  f , ~ )  = 0 ,  

where f and f appear k and m - k - 1 times, respectively. Hence, by the multi-linearity 

of  V, 

V(u ,u  . . . . .  u,~) -- 0 
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for all such ~. Let NN = E ~ span {u, v} where E is a real, invariant subspace for A. Then 

since W = r V  and V is symmetric, we have shown that 

( V W ( u ) , e ) = 0  for a l l e 6 E .  

Also, since Au = - i y v ,  y # O, and (VW(u) ,  Au) = 0, we find that 

(VW(u) , x )  = 0 i fx  6 span{E,v}. 

But span {E, v} has real co-dimension 1, and is determined only by the eigenspaces of  A. 

Hence VW(u)  lies in a one-dimensional space determined by A. Since u and span{v, E} 

are independent of  W, this proves the required result. [] 

Finally, for completeness, we prove the converse of  Theorem 4.1. 

T h e o r e m  4.7. Suppose that { f ~ K : P ~ 79, J ~ J p  , K ~ ]~ j ,  p } C (cN) * is any solution 
of(4.5) and (4.7). Let 

W(Zl, • ,Zm) = Y ~  /3 El. /~(Zl,  ,Z,m), (4.16) .. ot), ~? . . .  

where 

. = f e  (eP(m) ) and ( P , J , K ) = ( / 3 , ) , / ( ) [ { I , 2  ..... m- l} .  (4.17) 
J, K J, K \ J(m), K(m) 

Then V E Rm and V satisfies (4.4). 

Proof Clearly V defined by (4.13) is an element of  Cm. To see that it is in Rm we use 

Theorem 3.2(c). Now 

ot~ = f P  [ /3(m) ) by (4.14) j, ~: J. g ~e)(m) ' ~(rn) ' 

T [ ?(m) ) by (3.5) 
= fJ, x I % m ) ,  k(m) ' 

= f g  { -~(m) ) by definition of f J, K ~ej(m) ,l~(rn) ' 

- 7 -  - -  

P since P = P [{l, m-l} • = ~ L I ?  .... 

Since ,.Te = J T , / C  j, p = /C2, T it is immediate that the criterion in Theorem 3.2(c) is 

satisfied and hence V ~ Rm. 
m-1 Now to see that (4.4) is satisfied. S ince /ze  = - ~ e = l  )~P(e) we find, by (4.7), that 

~.e(e) f P  f P  f P  cN" j ,K + j ,K '~ -  j, K O A  ( Z ) = 0 ,  ZE  
t e=l e=l 
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^ 

In part icular,  i f  /3 E ~ ,  J 6 3 7 , / ~  6 /C j ,  ? ,  z = e P(m) and i f  ( e ,  J ,  K )  = 
J(m),/~(m) 

(/3, j , / ~ )  Ill ..... m-l} ,  then 

{ ~_.~ m--1 m--1 ) 
- - -  p p [ f ( m ) ' ~  

~.P(e)fj, K + Y ~  P fJ,  Ke + fJ,  K o a ~ei(m),l~(m), } = 0. (4.18) 
(=1 

However ,  by  defini t ion of  V, 

V (e~(l )  " ' "  e~(m) ^ ~ = f;,KP (e~(m) " 
\ J(1), / (( l) '  J(m),K(m)] \ J(m),K(m)] 

^ ^ 

a n d s i n c e A e  f ( ( )  =)~p(e)eP~ee~ + e ~  (() (4.15) can be re-wri t ten 
j(£), ~'(() , K(() J((),/~'(()-1 ' 

m 
V f f(1) ,eft(()  ,e~(m) ~- ^ ~ : 0 

ke.I(1),/~(1) . . . . .  A j(£),/~(() . . . .  J(m), K(m)] 
(=1 

for  a l l / 3  6 75, J 6 , ~ f , k  E / C ) ,  f .  But  

m 

Z V(z l  . . . . .  A z (  . . . . .  Zm) 
(=1 

m 
= Z Z otP~ ^ V ~ ^  (eP~ (1) ^ , a e ~  (() ^ , e~  (m) ^ "~ = 0 .  

J ,K J ,K \ J(I) ,K(I)  J(£),K(() J(m),K(m).l 

This shows that  V satisfies (4.4). This  comple tes  the proof.  [] 
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