

Journal of Geometry and Physics 19 (1996) 99-122

Real transformations with polynomial invariants

E.N. Dancer^a, J.F. Toland^{b,*}

^a School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia ^b School of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

Received 6 October 1994; revised 18 March 1995

Abstract

This paper seeks to generalise one aspect of classical Krein theory for linear Hamiltonian systems by examining how the existence of a non-trivial, homogeneous, polynomial W of degree $m \ge 2$ with $\langle Ax, \nabla W(x) \rangle = 0, x \in \mathbb{R}^N$, affects the spectrum of a real linear transformation A on \mathbb{R}^N . Amongst other things it is shown that (i) such a W exists if, and only if, the spectrum of A is linearly dependent over the natural numbers, and (ii) there exists such a W which is non-degenerate if, and only if, all the eigenvalues of A are imaginary and semi-simple. In classical Krein theory W is quadratic. Our enquiry is motivated by a theory of topological invariants for dynamical systems which have a first integral. Degenerate Hamiltonian systems are a special class where the present considerations are relevant.

Keywords: Krein theory; Polynomial invariants; Degenerate Hamiltonian systems; Homotopy invariant; Flows with a first integral *1991 MSC:* 11C99, 15A18, 15A57, 34A30, 34A34, 34C35

1. Introduction

Let *B* denote a real, symmetric, non-singular matrix on \mathbb{R}^{2n} . From the classical theory of linear Hamiltonian systems it is well-known (see [5,8,9]) that if *A* is any non-singular, real matrix and $\langle Ax, Bx \rangle = 0$ for all $x \in \mathbb{R}^{2n}$, then $\tilde{J} = AB^{-1}$ is skew-symmetric and the spectrum $\sigma(A)$ of $A = \tilde{J}B$ is closed under multiplication by -1. Note that the condition $\langle Ax, Bx \rangle = 0, x \in \mathbb{R}^{2n}$, means that the quadratic polynomial $V(x) = \langle Bx, x \rangle$ is an invariant for the flow of a Hamiltonian differential equation $\dot{x} = Ax$. The purpose here is to generalise these classical results on the spectrum of *A* by considering systems $\dot{x} = Ax$ with polynomial invariants of degree higher than two in \mathbb{R}^N . Such systems need not be

^{*} Corresponding author. E-mail: jft@maths.bath.ac.uk.

Hamiltonian, indeed N need not be even, though some of our results are new even when they are. If $f : \mathbb{R}^N \to \mathbb{R}^N$ and $W : \mathbb{R}^N \to \mathbb{R}$, $N \ge 2$, are smooth functions with the property that

$$|\nabla W(x), f(x)\rangle = 0, \quad x \in \mathbb{R}^N, \tag{1.1}$$

the W, which is constant on solutions of the ordinary differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = f(x(t)), \quad t \in \mathbb{R}, \ x(t) \in \mathbb{R}^N,$$
(1.2)

is called a first integral of the flow defined by (1.2) or, equivalently, an *invariant* of f. When 0 is an equilibrium of the flow and the Hessian B of W is non-singular, the effect on the spectrum of the non-singular matrix A = f'(0) is covered by the classical theory because $\langle Ax, Bx \rangle = 0$ for all $x \in \mathbb{R}^N$ and N must be even. However, in natural cases the Hessian is not invertible (see [4]). We therefore ask how inferences can be drawn from the existence of a more general function W satisfying (1.1). An example is the following result, part (a) of which is well-known (see [1]) and part (b) of which is proved in [4, Section 2.2].

Proposition 1.1. Suppose $f(0) = 0, A = f'(0) : \mathbb{R}^N \to \mathbb{R}^N$ is invertible and (1.1) holds.

- (a) If $W \neq 0$ on a deleted neighbourhood of 0 in \mathbb{R}^N then all the eigenvalues of A are purely imaginary.
- (b) If $\nabla W \neq 0$ on a deleted neighbourhood of 0 in \mathbb{R}^N then N is even. If f'(0) has no imaginary eigenvalues, then it has the same number of eigenvalues with positive real part as with negative real part.

2. The main results

The focus is on the case f = A, when A is a real, linear transformation and W is a homogeneous polynomial of arbitrary degree. It is instructive to point out how this special case relates to the problem for general polynomial and real-analytic invariants, before discussing its theory in detail.

Suppose in (1.1) that f(0) = 0 and that $f'(0) : \mathbb{R}^N \to \mathbb{R}^N$ has transformation matrix A. Then it follows from (1.1) that

$$0 = \lim_{t \downarrow 0} \langle \nabla W(tx), t^{-1} f(tx) \rangle = \langle \nabla W(0), Ax \rangle, \quad x \in \mathbb{R}^N.$$

If A is invertible it follows that $\nabla W(0) = 0$. Without supposing that A is invertible, suppose henceforth that $\nabla W(0) = 0$. It follows from (1.1) that

$$0 = \lim_{t \downarrow 0} \langle t^{-1} \nabla W(tx), t^{-1} f(tx) \rangle = D^2 W(0)(x, Ax) = \langle Bx, Ax \rangle, \quad x \in \mathbb{R}^N, \quad (2.1)$$

where $D^m W(0)$, the *m*th derivative of W at 0, is a real, symmetric, *m*-linear form on \mathbb{R}^N and the symmetric matrix B is the Hessian of W at 0. A differentiation with respect to x gives

$$\langle Bx, Ay \rangle + \langle By, Ax \rangle = 0, \quad x, y \in \mathbb{R}^N.$$
 (2.2)

In particular, if $y \in \ker(B)$ then $Ay \in (\operatorname{range}(B))^{\perp} = \ker(B)$ and so A is a linear transformation on $\ker(B)$. Now suppose $m \ge 3$ is the smallest natural number such that

$$D^m W(0)(x, x, \ldots, x, \cdot) \neq 0 \in (\ker(B))^*$$

for some $x \in \text{ker}(B)$. This is equivalent to $D^m W(0)$ being non-zero on ker(B). (Here $(\text{ker}(B))^*$ denotes the dual space of ker(B).) Then for all $x \in \text{ker}(B)$,

$$0 = \lim_{t \downarrow 0} \langle t^{-m+1} \nabla W(tx), t^{-1} f(tx) \rangle = \lim_{t \downarrow 0} t^{-m+1} DW(tx) \langle t^{-1} f(tx) \rangle$$
$$= \frac{1}{(m-1)!} D^m W(x, x, \dots, x, Ax).$$

Therefore if V is defined by $V(x) = D^m W(x, x, ..., x), x \in \text{ker}(B)$, then $A : \text{ker}(B) \rightarrow \text{ker}(B)$ and $\langle \nabla V(x), Ax \rangle = 0$ for all $x \in \text{ker}(B)$. Thus the study of the general condition (1.1) leads naturally to the particular case when f is linear and W is a homogeneous polynomial of degree m. At this stage it is appropriate to give some definitions [6].

By a *polynomial* on \mathbb{R}^N is meant a function $W : \mathbb{R}^N \to \mathbb{R}$ with the property that

$$W(x+ty) = \sum_{\ell=0}^{m} w_{\ell}(x, y) t^{\ell}, \quad t \in \mathbb{R}, \ x, y \in \mathbb{R}^{N},$$
(2.3)

where $w_{\ell} \in \mathbb{R}$ is independent of t. When $w_m \neq 0$ the polynomial is said to have degree m and if

$$W(tx) = t^m W(x), \quad x \in \mathbb{R}^N, \ t \in \mathbb{R},$$

then W is said to be homogeneous of degree m. A homogeneous polynomial W of degree m is a polynomial invariant for an $N \times N$ matrix transformation A if, and only if,

$$\langle \nabla W(x), Ax \rangle = 0, \quad x \in \mathbb{R}^N.$$
 (2.4)

Here \langle , \rangle denotes the inner product on \mathbb{R}^N relative to which ∇W is defined by the relation

$$\langle \nabla W(x), y \rangle = DW(x)(y), \quad x, y \in \mathbb{R}^N.$$

Suppose throughout that A is a fixed real linear transformation on \mathbb{R}^N . An element λ of $\sigma(A)$ is said to be semi-simple if its algebraic and geometric multiplicities coincide and simple if it has algebraic multiplicity 1. There follows a summary of our main conclusions.

The result of Theorem 4.2 is that A has a non-trivial, homogeneous, polynomial invariant of degree $m \ge 2$ if, and only if, there exist m eigenvalues, $\lambda_1, \ldots, \lambda_m$, of A (not necessarily distinct) with

$$\sum_{\ell=1}^{m} \lambda_{\ell} = 0. \tag{2.5}$$

In particular, $\sigma(A)$ is linearly independent over \mathbb{N} (the natural numbers) if, and only if, *A* has no non-trivial homogeneous, polynomial invariant. This observation pertains to homogeneous, *polynomial* invariants and not to homogeneous invariants in general. As the following example shows, the smoothness assumption has more influence than might at first appear likely.

Example. Let N = 2, $A = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ and $W(x, y) = |x|^p |y|^q$, p, q > 1. Then W, which is positively homogeneous of degree m = p + q, is a polynomial if, and only if, p and q are natural numbers. Also W is an invariant for A if, and only if,

$$\alpha p + \beta q = 0. \tag{2.6}$$

Therefore if $\beta < 0, \alpha > 1$ the matrix A has homogeneous invariants with any given order of differentiability and invariants with any given degree of homogeneity. By composing one of these invariants with a smooth, real-valued function which is zero, along with all its derivatives, at 0 we obtain a smooth invariant for A. But only when $p, q \in \mathbb{N}$ is there a homogeneous, *polynomial* invariant of degree m = p + q. Note that when $p, q \in \mathbb{N}$, (2.6) is the precise form which (2.5) takes in this example.

Note also that if $i\alpha \in \sigma(A), \alpha \in \mathbb{R}$, then a relation of the form (2.5) is obtained when *m* is even by putting $\lambda_{\ell} = (-1)^{\ell} i\alpha, 1 \leq \ell \leq m$. Therefore, if *A* has an imaginary eigenvalue it has a non-trivial, homogeneous, polynomial invariant of every even degree.

For convenience with notation, the word polynomial will be used to mean 'homogeneous polynomial'; on a few occasions when this meaning is not intended we will refer to a 'general polynomial'; the adjective 'homogeneous' may be included elsewhere, but only for emphasis. A polynomial W is said to be *non-degenerate* if, and only if,

$$\nabla W(x) \neq 0, \quad x \in \mathbb{R}^N \setminus \{0\}.$$

(The notion of a non-degenerate first integral, which coincides with requiring the Hessian to be invertible when W is quadratic, is central in the topological degree theory of [2–4].) We show in Theorem 4.6 that if A is non-singular then all its non-degenerate, polynomial invariants have even degree and N is even. Also A has a non-degenerate, polynomial invariant of even degree $m \ge 3$ if, and only if, all its eigenvalues are imaginary and semi-simple (Theorem 4.5). This result is false in the classical case of quadratic invariants (m = 2). For example, if A is a real, $2n \times 2n$, non-singular symmetric matrix and J is the usual symplectic matrix $\begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$, then $W(x) = \langle Ax, x \rangle$, $x \in \mathbb{R}^{2n}$, defines a non-degenerate, quadratic invariant for the matrix JA, if A is non-singular. However, the eigenvalues of JA are not, in all cases, imaginary. Note also that $\widehat{W}(x) = (W(x))^2$, $x \in \mathbb{R}^N$, defines a polynomial invariant of JA of degree 4, which is non-degenerate if, and only if, A is positive- or negative-definite. Therefore our result contains the classical one that when A is positive- or negative-definite all the eigenvalues of JA are imaginary and semi-simple. Indeed, A has a non-degenerate polynomial invariant of any degree $m \ge 3$ only if all its eigenvalues are imaginary and semi-simple (Theorem 4.6).

An invariant W is called active if

span{
$$\nabla W(x)$$
: $x \in \mathbb{R}^N$ } = \mathbb{R}^N .

If W is an active, polynomial invariant of degree $m \ge 2$ and $\lambda_1 \in \sigma(A)$, then there exist $\lambda_2, \ldots, \lambda_m \in \sigma(A)$, not necessarily distinct, such that (2.5) holds (Theorem 4.3). In the case m = 2, an invariant W is active if, and only if, its Hessian B at 0 is non-singular. This result therefore includes the classical one that if there exists a non-singular symmetric matrix B with $\langle Bx, Ax \rangle = 0$ for all $x \in \mathbb{R}^N$, then $\sigma(A)$ is closed under multiplication by -1.

When a non-trivial, polynomial invariant fails to be active on \mathbb{R}^N , it can control part of the spectrum of A, while having no influence on the rest. To see this, if W is a non-active, polynomial invariant for A let

 $\mathbb{R}^N = M \oplus M^{\perp}$ where $M = \operatorname{span}\{\nabla W(x) \colon x \in \mathbb{R}^N\},\$

and write $x = y + z \in M \oplus M^{\perp}, x \in \mathbb{R}^{N}$. Then for $t \in \mathbb{R}, y \in M$ and $z \in M^{\perp}$,

$$\frac{\mathrm{d}}{\mathrm{d}t}W(y+tz) = \langle \nabla W(y+tz), z \rangle = 0,$$

whence, if $x = y + z \in M \oplus M^{\perp}$,

$$W(x) = W(y).$$

If we write the vector $\nabla W(x) = \nabla W(y+z)$ as $(\nabla_y W(y+z), \nabla_z W(y+z))$, then

 $\nabla_z W(y+z) = 0$ and $\nabla_y W(y+z) = \nabla_y W(y)$.

Now with respect to the decomposition of $\mathbb{R}^N = M \oplus M^{\perp}$, let

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}.$$

Then (2.4), with x = y + z, has the form

$$0 = \langle A_{11}y + A_{12}z, \nabla_y W(y+z) \rangle = \langle A_{11}y + A_{12}z, \nabla_y W(y) \rangle$$

and

$$0 = \langle A_{21}y + A_{22}z, \nabla_z W(y+z) \rangle.$$

The second equality contains no information since $\nabla_z W = 0$. However, with z = 0 in the first, we find that

$$\langle A_{11}y, \nabla_y W(y) \rangle = 0, \quad y \in M.$$

In other words, $W|_M$ is a homogeneous, polynomial invariant for the matrix A_{11} , and W is active on M because $M = \text{span}\{\nabla W(y): y \in M\}$.

With y = 0, the first equation gives

$$\langle A_{12}z, \nabla_y W(y) \rangle = 0, \quad y \in M, \ z \in M^{\perp},$$

which implies that $A_{12} = 0$, since $M = \text{span}\{\nabla_y W(y): y \in M\}$. Hence

$$A = \begin{pmatrix} A_{11} & 0\\ A_{21} & A_{22} \end{pmatrix},$$

from which it follows that M^{\perp} is an invariant subspace of A and every eigenvalue of A_{11} is also an eigenvalue of A, with the same multiplicity. Note also that the degree of W restricted to M is the same as the degree of W on \mathbb{R}^N (because W(x) = W(y) where $x = y + z \in M \oplus M^{\perp}$). Hence every eigenvalue of A_{11} is also an eigenvalue of A and is involved in a relationship (2.5) with (m - 1) eigenvalues of A which are also eigenvalues of A_{11} .

Now we can regard the result following (2.2), that ker(B) is an invariant subspace for the operator A, as a special case of the present discussion in which $M = \operatorname{range}(B)$ and m = 2. Thus an inductive procedure for deciding how a general polynomial invariant W influences the spectrum of A emerges. At the mth step, the theory of this paper shows how the mth derivative of W, behaving as an active, homogeneous polynomial invariant, controls a part of $\sigma(A)$ (the part which coincides with the spectrum of A_{11} in the above analysis) while simultaneously defining a new invariant subspace M^{\perp} for A upon which higher derivatives of W influence the spectrum at the (m + 1)st step. If W denotes a real-analytic invariant of A, the whole spectrum of A is constrained by W in this way, except when W is identically zero on a subspace of \mathbb{R}^N .

A polynomial is *non-vanishing* if $W(x) \neq 0, x \in \mathbb{R}^N \setminus \{0\}$. It is easy to see that, for homogeneous polynomials, non-vanishing \Rightarrow non-degenerate \Rightarrow active, and so the results outlined above strengthen Proposition 1.1 in the case when W is a homogeneous polynomial. Indeed, there is a scale of hypotheses, reflecting the decreasing influence of the invariant W on $\sigma(A)$, which can be described as follows:

$$\boldsymbol{H}_k: \qquad D^k W(x) \neq 0 \quad \text{for all } x \in \mathbb{R}^N \setminus \{0\}, \ k = 0, 1, \dots, m-1.$$

Note that H_k with k = 0, 1, and m - 1 is equivalent to non-vanishing, non-degenerate and active, respectively and that H_k implies H_ℓ if $k \le \ell$.

The following example illustrates how much weaker are the implications for a nonsingular transformation A of the existence of an active, as opposed to a non-degenerate, first integral.

Example. Let

104

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & -2 \end{pmatrix}$$

and let $W : \mathbb{R}^4 \to \mathbb{R}$ be the cubic polynomial defined by

$$W(\boldsymbol{x}) = x_2^2 x_4 - x_2^2 x_3 + x_1 x_2 x_4, \quad \boldsymbol{x} = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4.$$

Then

$$\nabla W(\boldsymbol{x}) = (x_2 x_4, 2 x_2 (x_4 - x_3) + x_1 x_4, -x_2^2, x_2^2 + x_1 x_2)$$

and it is easily checked that $\langle \nabla W(\mathbf{x}), A\mathbf{x} \rangle = 0$, $\mathbf{x} \in \mathbb{R}^4$. Now, to check that V is active, suppose that for some $\mathbf{a} \in \mathbb{R}^4$,

$$\langle \nabla W(\boldsymbol{x}), \boldsymbol{a} \rangle = 0$$
 for all $\boldsymbol{x} \in \mathbb{R}^4$.

Then for all $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$,

 $0 = a_1 x_2 x_4 + 2a_2 x_2 (x_4 - x_3) + a_2 x_1 x_4 - a_3 x_2^2 + a_4 x_2^2 + a_4 x_1 x_2.$

The x_1x_2 term gives $a_4 = 0$; the x_2^2 term then gives $a_3 = 0$; the x_1x_4 term gives $a_2 = 0$ and the x_2x_4 term gives $a_1 = 0$. Hence, span{ $\nabla W(\boldsymbol{x}) : \boldsymbol{a} \in \mathbb{R}^4$ } = \mathbb{R}^4 and so V is active.

Hence this non-singular, real transformation A has an active, polynomial invariant W of odd degree, its eigenvectors are all real and none of them is semi-simple. If W were non-degenerate then its degree would be even and the eigenvalues of A would be imaginary and semi-simple. From Theorem 4.4 it is easy to see that in this example the degree of any polynomial invariant of A is a multiple of 3.

There follows a brief remark about the possibility of more than one polynomial invariant. If W_1 and W_2 are homogeneous polynomials, of possibly different degrees $m_1, m_2 \ge 2$, they are strictly independent if $\{\nabla W_1(x), \nabla W_2(x)\}$ is a linearly independent set for every $x \in \mathbb{R}^N \setminus \{0\}$. Note that if this is so then W_1 and W_2 are non-degenerate and m_1 and m_2 are both even, or both odd (Theorem 4.6). Hence if W_1 and W_2 are polynomial invariants with degrees $m \ge 3$ then all the eigenvalues of A are imaginary and semi-simple. We will prove amongst other things (Theorem 4.6) that if the eigenvalues of a non-singular, real transformation A with largest modulus are simple, then A does not have a strictly independent pair of polynomial invariants. This is an analogue of Lemma 1.1 of [3] which says that if A has a simple, imaginary eigenvalue it does not have a strictly independent pair of quadratic, polynomial invariants. It is easy to see [4, Lemma 3.3], that if $\alpha \nabla W_1(x_0) + \beta \nabla W_2(x_0) =$ $0, x_0 \in \mathbb{R}^N \setminus \{0\}$ and W_1 and W_2 are polynomial invariants of A, then $\alpha \nabla W_1(x(t)) + \beta \nabla W_2(x(t)) = 0$ for all $t \in \mathbb{R}$ when

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = Ax(t), \quad t \in \mathbb{R}, \ x(0) = x_0.$$

Such remarks about the non-existence of strictly independent invariants is significant in the topological degree theory for flows with a first integral [2–4]. In the presence of a pair of strictly independent integrals the degree is trivial (see [3, p.570]).

3. Preliminaries

A function $V : (\mathbb{C}^N)^m \to \mathbb{C}$ is said to be a complex *m*-linear form on \mathbb{C}^N if for each $\ell \in \{1, ..., m\}$ and $z_1, ..., z_{\ell-1}, z_{\ell+1}, ..., z_m$, the function

$$z \mapsto V(z_1, \ldots, z_{\ell-1}, z, z_{\ell+1}, \ldots, z_m)$$
 is linear over \mathbb{C} ,

and a complex m-linear form V is symmetric if

 $V(z_1,\ldots,z_m)=V(z_{\sigma(\ell)},\ldots,z_{\sigma(m)}), \quad \sigma \in S_m,$

where S_m denotes the group of permutations of *m* elements. A complex polynomial on \mathbb{C}^N is defined by (2.3) with $t \in \mathbb{C}$, $x, y \in \mathbb{C}^N$. A polynomial or an *m*-linear form is said to be *real* if its value is real when its argument is real. Let C_m denote the complex space of all *m*-linear forms on \mathbb{C}^N and let R_m be the real space of real *m*-linear forms. Let C_m^{σ} and R_m^{σ} denote the corresponding spaces of symmetric forms. In [6] it is shown that the linear operator Σ defined by

$$\Sigma V(z) = V(z, \dots, z), \quad V \in C_m, \ z \in \mathbb{C}^N,$$
(3.1)

is a surjection from C_m onto the space of complex, homogeneous polynomials of degree m, whose restriction to C_m^{σ} is a bijection with the same range. The analogous statement for R_m , R_m^{σ} and real, homogeneous polynomials follows by the same argument. Therefore, in considering real, homogeneous polynomial invariants W, there is no loss of generality in seeking W in the form ΣV for some V in R_m^{σ} .

Lemma 3.1. Suppose that W is a real, homogeneous polynomial of degree m. Then

- (a) W is active if, and only if, H_{m-1} holds;
- (b) W is non-degenerate if, and only if, H_1 holds;
- (c) W is non-vanishing if, and only if, H_0 holds.

Proof. Let $W = \Sigma V$, where $V \in R_m^{\sigma}$.

(a). Suppose W is not active. Then there exists $y \in \mathbb{R}^N \setminus \{0\}$ such that

$$\langle \nabla W(x), y \rangle = 0, \quad x \in \mathbb{R}^N.$$
 (3.2)

Since $W = \Sigma V$ and V is symmetric, (3.2) may be re-written as

$$DW(x)(y) = V(x, x, \dots, x, y) = 0, \quad x \in \mathbb{R}^{N}$$

After differentiating (m - 1) times and using the symmetry of V, we find

$$D^{m-1}W(y)(x_1,\ldots,x_{m-1}) = V(y,x_1,\ldots,x_{m-1}) = 0, \quad x_1,\ldots,x_{m-1} \in \mathbb{R}^N.$$
(3.3)

Since $y \neq 0$, we have proved that H_{m-1} is false when W is not active. Conversely, if H_{m-1} is false then (3.3) holds for some non-zero $y \in \mathbb{R}^N$. Putting $x_1 = x_2 = \cdots = x_{m-1} = x$ we find that (3.2) holds and hence W is not active. This completes the proof of (a). (b),(c). These are both immediate from the definitions.

Remark. From (3.3) there follows the observation that H_k implies H_ℓ when $k \le \ell$.

Suppose that a basis $\{e_1, \ldots, e_N\} \subset \mathbb{C}^N$ is closed under conjugation $(\{\overline{e}_1, \ldots, \overline{e}_N\} = \{e_1, \ldots, e_N\}$, where $\overline{}$ denotes the usual component-wise operation of complex conjugation in \mathbb{C}^N). Its dual basis $\{e_1^*, \ldots, e_N^*\}$ for $(\mathbb{C}^N)^*$ is uniquely determined by the system of equations $e_i^*(e_j) = \delta_{ij}, 1 \leq i, j \leq N$. If $f \in (\mathbb{C}^N)^*$, let $\overline{f} \in (\mathbb{C}^N)^*$ be defined by $\overline{f}(z) = \overline{f(\overline{z})}, z \in \mathbb{C}^N$. Note that

$$\overline{e_i^*(\overline{e_j})} = \overline{e_i^*(e_j)} = \delta_{ij}.$$
(3.4)

Hence $\{\overline{e_1^*}, \ldots, \overline{e_N^*}\}$ is the dual basis of $\{\overline{e}_1, \ldots, \overline{e}_N\}$ (which is also clearly a basis for \mathbb{C}^N). By uniqueness, $\{e_1^*, \ldots, e_N^*\}$ is also closed under the conjugation operation defined above on $(\mathbb{C}^N)^*$. Note that $\overline{e}_i^* = \overline{e_i^*}$.

Let Q denote the set of all functions q which map $\{1, ..., m\}$ into $\{1, ..., N\}$. If $q \in Q$, let $\overline{q} \in Q$ be defined by

$$e_{\overline{q}(j)} = \overline{e_{q(j)}}, \quad 1 \le j \le m.$$
(3.5)

Note that, for any *i*, *j*, the definition of \overline{q} gives

$$e_{\overline{q}(i)}^{*}(e_j) = 1$$
 if, and only if, $\overline{q}(i) = j$, i.e. if, and only if, $\overline{e_{q(i)}} = e_j$.

while

$$\overline{e_{q(i)}^*}(e_j) = \overline{e_{q(i)}^*}(\overline{e_j}) = 1$$
 if, and only if, $\overline{e}_j = e_{q(i)}$, i.e. if, and only if, $\overline{q}(i) = j$.

Hence it follows that

$$e_{\overline{q}(i)}^* = \overline{e_{q(i)}^*}, \quad 1 \le i \le N.$$
(3.6)

If $q \in Q$, let $V_q \in C_m$ be defined by

$$V_q(z_1, \dots, z_m) = \prod_{i=1}^m e_{q(i)}^*(z_i).$$
(3.7)

Then

$$\overline{V_q(z_1, \dots, z_m)} = \prod_{i=1}^m \overline{(e_{q(i)}^*(z_i))}$$
$$= \prod_{i=1}^m \overline{e_{q(i)}^*}(\overline{z_i}), \quad \text{by definition of } \overline{e_{q(i)}^*}$$
$$= \prod_{i=1}^m e_{\overline{q}(i)}^*(\overline{z_i}), \quad \text{by (3.6).}$$

Hence for any $q \in Q$,

$$\overline{V_q(z_1,\ldots,z_m)} = V_{\overline{q}}(\overline{z}_1,\ldots,\overline{z}_m).$$
(3.8)

Theorem 3.2.

(a) The set $\{V_q : q \in Q\}$ is a basis for C_m and if $V \in C_m$ then

$$V = \sum_{q \in \mathcal{Q}} \alpha_q V_q, \quad where \ \alpha_q = V(e_{q(1)}, e_{q(2)}, \dots, e_{q(m)}). \tag{3.9}$$

(b) If $V \in C_m$ then $V \in R_m$ if, and only if, for all $(z_1, \ldots, z_m) \in (\mathbb{C}^N)^m$

$$\overline{V(z_1,\ldots,z_m)} = V(\overline{z}_1,\ldots,\overline{z}_m). \tag{3.10}$$

(c) If $V \in C_m$ then (3.10) holds, if and only if,

$$\overline{\alpha}_q = \alpha_{\overline{q}} \quad \text{for all } q \in Q. \tag{3.11}$$

Proof

(a) It is clear that for each $q \in Q$ the function V_q is in C_m . Suppose that $q_i, 1 \le i \le r$, are distinct elements of Q and $\alpha_i \in \mathbb{C}, 1 \le i \le r$, are such that $\sum_{i=1}^r \alpha_i V_{q_i} = 0 \in C_m$. Then since

$$V_{q_i}(e_{q_j(1)}, e_{q_j(2)}, \ldots, e_{q_j(m)}) \ge 0$$

with equality if, and only if, i = j, it follows immediately that $\alpha_i = 0$ for all $i, 1 \le i \le r$. Thus $\{V_q : q \in Q\}$ is linearly independent. Now if $V \in C_m$ and $z_i \in \mathbb{C}^N$, $1 \le i \le m$, then $z_i = \sum_{i=1}^N e_i^*(z_i)e_j$, whence

$$V(z_1, ..., z_m) = V\left(\sum_{j=1}^N e_j^*(z_1)e_j, ..., \sum_{j=1}^N e_j^*(z_m)e_j\right) = \sum_{q \in Q} \alpha_q V_q(z_1, ..., z_m).$$

Hence $\{V_q : q \in Q\}$ spans C_m . This proves (a).

(b) If $(z_1, \ldots, z_m) \in (\mathbb{R}^N)^m$ and (3.10) holds then it is immediate that $V(z_1, \ldots, z_m) \in \mathbb{R}$. Conversely, suppose that $V(z_1, \ldots, z_m) \in \mathbb{R}$ wherever $(z_1, \ldots, z_m) \in (\mathbb{R}^N)^m$. For this step only, let $\{e_1, \ldots, e_N\}$ be the standard basis of \mathbb{R}^N over \mathbb{R} (which is also a basis for \mathbb{C}^N over \mathbb{C} and which is closed under conjugation). Then by (3.9), α_q is real for all $q, q = \overline{q}$ and

$$\overline{V(z_1, \dots, z_m)} = \sum_{q \in Q} \alpha_q \overline{V_q(z_1, \dots, z_m)}$$
$$= \sum_{q \in Q} \alpha_q V_{\overline{q}}(\overline{z}_1, \dots, \overline{z}_m), \quad \text{by (3.8)}$$
$$= \sum_{q \in Q} \alpha_q V_q(\overline{z}_1, \dots, \overline{z}_m) = V(\overline{z}_1, \dots, \overline{z}_m).$$

This proves (b).

(c) As in part (a), let $\{e_1, \ldots, e_N\}$ be any basis of \mathbb{C}^N which is closed under conjugation. If (3.10) holds then

$$\overline{\alpha_q} = \overline{V(e_{q(1)}, \ldots, e_{q(m)})} = V(\overline{e_{q(1)}}, \ldots, \overline{e_{q(m)}}) = V(e_{\overline{q}(1)}, \ldots, e_{\overline{q}(m)}) = \alpha_{\overline{q}}.$$

Conversely, if (3.11) holds, then

$$V(z_1, \dots, z_m) = \sum_{q \in Q} \alpha_q V_q(z_1, \dots, z_m)$$

= $\sum_{q \in Q} \overline{\alpha_{\overline{q}}} V_q(z_1, \dots, z_m)$, by (3.11)
= $\sum_{q \in Q} \overline{\alpha_{\overline{q}}} V_{\overline{q}}(\overline{z}_1, \dots, \overline{z}_m)$, by (3.8)

$$= \overline{\sum_{\overline{q} \in Q} \alpha_{\overline{q}} V_{\overline{q}}(\overline{z}_1, \ldots, \overline{z}_m)} = \overline{V(\overline{z}_1, \ldots, \overline{z}_m)}.$$

This proves (c).

If A is a real, linear transformation on \mathbb{R}^N and W is a real, polynomial of degree m such that

$$\langle \nabla W(x), Ax \rangle = 0, \quad x \in \mathbb{R}^N,$$
(3.12)

suppose, without loss of generality, that $W = \Sigma V, V \in R_m^{\sigma}$. Because V is symmetrical, (3.12) may be re-written as

$$V(x, x, \dots, x, Ax) = 0, \quad x \in \mathbb{R}^N,$$
(3.13)

which, after differentiating m times, gives

$$\sum_{\ell=1}^{m} V(x_1, x_2, \dots, Ax_{\ell}, \dots, x_m) = 0, \quad x_{\ell} \in \mathbb{R}^N, \ 1 \le \ell \le m.$$
(3.14)

Therefore, because V is symmetric, (3.13) and (3.14) are equivalent. But, when V is a general (not necessarily symmetric) element of R_m , it remains the case that (3.14) implies (3.12) when $W = \Sigma V$.

Hence if $V \in R_m$ satisfies (3.14) and is non-trivial on the diagonal, $\{(x, ..., x) : x \in \mathbb{R}^N\}$ of $(\mathbb{R}^N)^m$ then $W = \Sigma V$ is a non-trivial, homogeneous, polynomial invariant for A of degree m. Also, all homogeneous, polynomial invariants W of degree m of A are in the form $W = \Sigma V$, $V \in \mathbb{R}_m^m$, where V satisfies (3.14).

Now suppose that $V \in R_m$ satisfies (3.14) and let $\{e_1, \ldots, e_N\}$ be the standard basis for \mathbb{R}^N over \mathbb{R} which is also a basis for \mathbb{C}^N over \mathbb{C} . Then, for $q \in Q$, let $\alpha_q = V(e_{q(1)}, \ldots, e_{q(m)})$ and for $(z_1, \ldots, z_m) \in (\mathbb{C}^N)^m$ let

$$V(z_1, ..., z_m) = \sum_{q \in Q} \alpha_q V_q(z_1, ..., z_m).$$
(3.15)

If $x_1, \ldots, x_{m-1} \in \mathbb{R}^N$ and $z_m = x_m + iy_m \in \mathbb{C}^N$, then

$$\sum_{\ell=1}^{m} V(x_1, \dots, Ax_{\ell}, \dots, x_{m-1}, z_m)$$

= $\sum_{\ell=1}^{m} V(x_1, \dots, Ax_{\ell}, \dots, x_{m-1}, x_m) + iV(x_1, \dots, Ax_{\ell}, \dots, x_{m-1}, y_m) = 0.$

Now suppose that for some $k \leq m - 1$,

$$\sum_{\ell=1}^{k} V(x_1, \dots, Ax_{\ell}, \dots, x_k, z_{k+1}, \dots, z_m) + \sum_{\ell=k+1}^{m} V(x_1, \dots, x_k, z_{k+1}, \dots, Az_{\ell}, \dots, z_m) = 0,$$

109

for all $(x_1, \ldots, x_k, z_{k+1}, \ldots, z_m) \in (\mathbb{R}^N)^k \times (\mathbb{C}^N)^{m-k}$. (We have just observed this when k = m - 1.) Then

$$\sum_{\ell=1}^{k-1} V(x_1, \dots, Ax_{\ell}, \dots, x_{k-1}, z_k, \dots, z_m) + \sum_{\ell=k}^m V(x_1, \dots, x_{k-1}, z_k, \dots, Az_{\ell}, \dots, z_m) = \sum_{\ell=1}^k V(x_1, \dots, Ax_{\ell}, \dots, x_k, \dots, z_{k+1}, \dots, z_m) + \sum_{\ell=k+1}^m V(x_1, \dots, x_k, z_{k+1}, \dots, Az_{\ell}, \dots, z_m) + i \left[\sum_{\ell=1}^k V(x_1, \dots, Ax_{\ell}, \dots, x_{k-1}, y_k, z_{k+1}, \dots, z_m) \right] + \sum_{\ell=k+1}^m V(x_1, \dots, x_{k-1}, y_k, z_{k+1}, \dots, Az_{\ell}, \dots, z_m) \\= 0.$$

Hence, by induction, (3.14) implies that

$$\sum_{\ell=1}^{m} V(z_1, \dots, Az_{\ell}, \dots, z_m) = 0, \quad z_{\ell} \in \mathbb{C}^N, \ 1 \le \ell \le m.$$
(3.16)

Therefore any real V satisfying (3.14) can be extended to a complex V satisfying (3.16) and there is no loss of generality in considering (3.16) for elements V of R_m from the outset.

Now suppose that $V \in R_m$ is identically zero on the diagonal of $(\mathbb{R}^N)^m$. Then $V(x, x, ..., x) = 0, x \in \mathbb{R}^N$, and differentiation *m* times gives

$$\sum_{\sigma \in S_m} V(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(m)}) = 0, \quad x_1, \dots, x_n \in \mathbb{R}^N.$$
(3.17)

From this, it follows, by induction, that the extension of V as an element of C_m has the property that

$$V(x + iy, x + iy, \dots, x + iy) = 0, \quad x + iy \in \mathbb{C}^{N}.$$

Hence if $V \in R_m$ is zero on the diagonal of $(\mathbb{R}^N)^m$, then it is zero on the diagonal of $(\mathbb{C}^N)^m$. Also the degree of ΣV is the same when regarded as a real or a complex polynomial.

4. Polynomial invariants of real transformations

Since A is real, $\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$ is closed under conjugation and $n \leq N$. Now we introduce notation for a Jordan basis of A. For each $p, 1 \leq p \leq n$, let \overline{p} be such that $\lambda_{\overline{p}} = \overline{\lambda_p}$ and let

$$\ker(\lambda_p I - A) = \operatorname{span}\{f_j^p \colon 1 \le j \le n(p)\},\tag{4.1a}$$

where $\{f_j^p: 1 \le j \le n(p)\}$ is a linearly independent set with $f_j^{\overline{p}} = \overline{f_j^p}$ chosen as follows: for each $p \in \{1, ..., n\}$, let $j \in \{1, ..., n(p)\}$ and let there exist $\{e_{j,k}^p: 1 \le k \le m(j, p)\}$, the root vectors, satisfying

$$e_{j,1}^p = f_j^p, \quad Ae_{j,k+1}^p = \lambda_p e_{j,k+1}^p + e_{j,k}^p, \qquad 1 \le k \le m(j,p) - 1,$$
 (4.1b)

$$e_{j,m(j,p)}^{p} \notin \operatorname{Range}(\lambda_{p}I - A),$$
(4.1c)

$$e_{j,k}^{\overline{p}} = \overline{e_{j,k}^{p}}, \quad p \in \{1, \dots, n\}, \quad j \in \{1, \dots, n(p)\}, \ k \in \{1, \dots, m(j, p)\}.$$
 (4.1d)

Then $B = \{e_{j,k}^{p}: 1 \le p \le n, 1 \le j \le n(p), 1 \le k \le m(j, p)\}$ is a basis of \mathbb{C}^{N} which is closed under conjugation relative to which A is in Jordan Normal Form. For convenience with notation later, let $e_{k,0}^{p} = 0$.

Now let \mathcal{P} denote the set of all functions $P : \{1, \ldots, m-1\} \rightarrow \{1, \ldots, n\}$. If $P \in \mathcal{P}$ let $\overline{P} \in \mathcal{P}$ be defined by $\lambda_{\overline{P}(\ell)} = \overline{\lambda_{P(\ell)}}, 1 \leq \ell \leq m-1$. If $P \in \mathcal{P}$ let \mathcal{J}_P be the set of functions J on $\{1, \ldots, m-1\}$ with $J(\ell) \in \{1, 2, \ldots, n(P(\ell))\}, 1 \leq \ell \leq m-1$.

If $P \in \mathcal{P}$ and $J \in \mathcal{J}_P$ let $\mathcal{K}_{J,P}$ denote those functions K on $\{1, \ldots, m-1\}$ with $K(\ell) \in \{1, 2, \ldots, m(J(\ell), P(\ell))\}$. Finally, if $K \in \mathcal{K}_{J,P}$ let K_{ℓ} be defined by

$$K_{\ell}(\ell') = \begin{cases} K(\ell') & \text{if } \ell \neq \ell', \\ K(\ell) - 1 & \text{if } \ell = \ell'. \end{cases}$$

(Note that K has range in \mathbb{N} and K_{ℓ} has range in $\mathbb{N} \cup \{0\}$.) Let

$$|K| = \sum_{\ell=1}^{m-1} K(\ell), \quad K \in \mathcal{K}_{J, P} \text{ and } \mu_P = -\sum_{\ell=1}^{m-1} \lambda_{P(\ell)}.$$
(4.2)

Note that $\mu_{\overline{P}} = \overline{\mu_P}$ because of the definition of \overline{P} . Let $V \in R_m$ and for $P \in \mathcal{P}, J \in \mathcal{J}_P, K \in \mathcal{K}_{J, P}$ let $v_{J, K}^P \in (\mathbb{C}^N)^*$ be defined by

$$v_{J,K}^{P}(z) = V(e_{J(1),K(1)}^{P(1)}, e_{J(2),K(2)}^{P(2)}, \dots, e_{J(m-1),K(m-1)}^{P(m-1)}, z), \quad z \in \mathbb{C}^{N}.$$
(4.3)

Note that $v_{J, K_{\ell}}^{P} = 0$ if $K_{\ell}(\ell) = 0$. Since *B* is a basis for \mathbb{C}^{N} , the function *V* is known if all of the functionals $v_{J, K}^{P}$ are known. This is immediate by Theorem 3.2. Because of the discussion in Section 3, to find a non-trivial, polynomial invariant for *A* it is sufficient to find $V \in R_{m}$ such that *V* is non-trivial on the diagonal of $(\mathbb{R}^{N})^{m}$ and

$$\sum_{i=1}^{m} V(z_1, z_2, z_{i-1}, Az_i, z_{i+1}, \dots, z_m) = 0 \quad \text{for all } (z_1, \dots, z_m) \in (\mathbb{C}^N)^m.$$
(4.4)

Let A^* denote the conjugate of A on $(\mathbb{C}^N)^*$ defined by $(Az^*)z = z^*(Az), z \in \mathbb{C}^N, z^* \in (\mathbb{C}^N)^*$. Note that relative to the basis for $(\mathbb{C}^N)^*$ dual to B, the transformation matrix for A^* is the transpose of the Jordan Normal Form of A.

Theorem 4.1. Let $V \in R_m$, $P \in \mathcal{P}$, $J \in \mathcal{J}_P$ and $K \in \mathcal{K}_{J,P}$. If (4.4) holds then

(a)
$$v_{J,K}^{\overline{P}}(z) = \overline{v_{J,K}^{P}(\overline{z})} = \overline{v_{J,K}^{P}(z)},$$
 (4.5)

(b)
$$v_{J,K}^{P} \in \ker(\mu_{P}I - A^{*})^{|K|+2-m},$$
 (4.6)

(c)
$$(\mu_P I - A^*) v_{J,K}^P = \sum_{\ell=1}^{m-1} v_{J,K_\ell}^P.$$
 (4.7)

Hence, by (b),

(d)
$$v_{J,K}^P = 0$$
 if $\mu_P \notin \sigma(A)$. (4.8)

Proof.

(a). By the definition of \overline{P} and (4.1)

$$v_{J,K}^{\overline{P}}(z) = V(\overline{e_{J(1),k(1)}^{P(1)}}, \dots, \overline{e_{J(m-1),K(m-1)}^{P(m-1)}}, z)$$

= $\overline{V(e_{J(1),K(1)}^{P(1)}, \dots, e_{J(m-1),K(m-1)}^{P(m-1)}, \overline{z})}$, by Theorem 3.2(b)
= $\overline{v_{J,K}^{\overline{P}}(\overline{z})}$.

(b), (c). If $P \in \mathcal{P}, J \in \mathcal{J}_P, K \in \mathcal{K}_{J, P}$ and $\ell \in \{1, 2, \dots, m-1\}$ then

$$Ae_{J(\ell), K(\ell)}^{P(\ell)} = \lambda_{P(\ell)}e_{J(\ell), K(\ell)}^{P(\ell)} + e_{J(\ell), K_{\ell}(\ell)}^{P(\ell)}.$$
(4.9)

(Recall the convention that $e_{k,0}^p = 0$.) Therefore, from (4.4) with $z_m = z \in \mathbb{C}^N$ and $z_\ell = e_{J(\ell), K(\ell)}^{P(\ell)}$, $1 \le \ell \le m - 1$, we obtain

$$\sum_{\ell=1}^{m-1} \lambda_{P(\ell)} v_{J,K}^{P}(z) + \sum_{\ell=1}^{m-1} v_{J,K_{\ell}}^{P}(z) + v_{J,K}^{P}(Az) = 0, \quad z \in \mathbb{C}^{N}.$$

This can be re-written as

$$(A^* - \mu_P I)v_{J,K}^P + \sum_{\ell=1}^{m-1} v_{J,K_\ell}^P = 0 \in (\mathbb{C}^N)^*,$$
(4.10)

which proves (4.7). To complete the proof let $P \in \mathcal{P}, J \in \mathcal{J}_P$ be fixed. We use induction on $|K| = \sum_{\ell=1}^{m-1} K(\ell)$. The inductive hypothesis is that

$$v_{J,K}^P \in \ker(\mu_P I - A^*)^{(|K|+2-m)}$$
 if $m-1 \le |K| \le k$.

Note first that when |K| = m - 1, $K(\ell) = 1$ for all ℓ . Hence $K_{\ell}(\ell) = 0$ for all ℓ and so $(A^* - \mu_P I)v_{J,K}^P = 0$ by (4.10). Since |K| + 2 - m = 1 in this case the result is proved when k = m - 1.

Now suppose |K| = k + 1. Then for all ℓ either $K_{\ell} \in \mathcal{K}_{J, P}$ and $|K_{\ell}| = k$, or $K_{\ell}(\ell) = 0$ and $v_{J, K_{\ell}}^{P} = 0$ by construction. It is now immediate, by the induction hypothesis and (4.10),

that $v_{J,K}^P \in \ker(\mu_P I - A^*)^{k+3-m}$, and the result follows since k + 3 - m = |K| + 2 - m in this case.

Remarks. First, note that specifying a particular $P \in \mathcal{P}$ is equivalent to picking a set of (m-1) (not necessarily distinct) eigenvalues of A, and the subsequent choice of J denotes the selection of particular eigenvectors of A corresponding to the eigenvalues already chosen. The system (4.7) is, in fact, a union of uncoupled sub-systems, one for each pair (P, J), each sub-system being parametrized by $K \in \mathcal{K}_{J, P}$. Therefore, it is sufficient, and possibly more convenient, to consider each sub-system separately.

Second, suppose that for a given (P, J) the corresponding sub-system of (4.7) has a non-zero solution. We want to show that there is a solution of the sub-system corresponding to (\overline{P}, J) so that (4.5) holds. If $P \neq \overline{P}$, then (P, J) and (\overline{P}, J) have distinct sub-systems in (4.7), $\mathcal{K}_{J,P} = \mathcal{K}_{J,\overline{P}}$ and it suffices to *define* $v_{J,K}^{\overline{P}}(z)$ to be $\overline{v_{J,K}^{P}(\overline{z})}$. It is immediate from the construction that this is a non-trivial solution of the sub-system (4.7) for (\overline{P}, J) . The case $P = \overline{P}$ occurs if, and only if, $\lambda_{P(\ell)}$ is real for all ℓ , $1 \leq \ell \leq m - 1$, in which case μ_P is also real. Suppose $\{v_{J,K}^{P} : K \in \mathcal{K}_{J,P}\}$ is a given, non-zero solution of (4.7) for given (P, J). Let

$$w_{J,K}^P(z) = v_{J,K}^P(z) + \overline{v_{J,K}^P(\overline{z})}, \quad z \in \mathbb{C}^N,$$

for all $K \in \mathcal{K}_{J, P}$. Then $\{w_{J, K}^{P}: K \in \mathcal{K}_{J, P}\}$ is a solution of (4.5) and (4.7). If it is the zero solution, then for all $K \in \mathcal{K}_{J, P}$

$$0 = w_{J,K}^P(x) = 2 \operatorname{Real} v_{J,K}^P(x), \quad x \in \mathbb{R}^N.$$

If this is so, note that $\{r_{J,K}^{P}: K \in \mathcal{K}_{J,P}\}$ is also a non-zero solution of (4.7) for given (P, J), where $r_{J,K}^{P} = iv_{J,K}^{P}$. Now define $w_{J,K}^{P}$ using $r_{J,K}^{P}$ instead of $v_{J,K}^{P}$ to obtain a non-zero solution of (4.5) and (4.7).

In all cases, a non-zero solution of (4.7) for given (P, J) leads to a non-zero solution of (4.5) and (4.7). In Theorem 4.6 below it is shown that a solution of (4.5), (4.7) is sufficient, as well as necessary, for the existence of a solution V of (4.4) in R_m . Whether V is non-zero on the diagonal determines whether there is a non-trivial, polynomial invariant W of A in the form $W = \Sigma V$. If however V is a non-trivial, symmetric solution of (4.5) and (4.7), then V must be non-zero on the diagonal, for otherwise differentiating n times gives $V = 0 \in R_m^{\sigma}$.

By the ascent of an operator A is meant inf $\{n \in \mathbb{N} \cup \{0\}: \ker(A^n) = \ker(A^{n+1})\}$. (Since $A^0 = I$, the ascent of A is 0 if, and only if, A is injective.) If μ is an eigenvalue of A then we will refer to the ascent of $(\mu I - A)$ as the ascent of μ . By classical theory μ has the same ascent as an eigenvalue of A and of A^* , and the ascent α of the eigenvalues μ and $\overline{\mu}$ of a real transformation A are equal. Also, for all $\mu \in \mathbb{C}$,

$$\ker(\mu I - A)^{\alpha} = \bigcup_{k \in \mathbb{N}} \ker(\mu I - A)^{k} = \mathcal{N}(\mu I - A),$$

range $(\mu I - A)^{\alpha} = \bigcap_{k \in \mathbb{N}} \operatorname{range}(\mu I - A)^{k} = \mathcal{R}(\mu I - A)$

E.N. Dancer, J.F. Toland/Journal of Geometry and Physics 19 (1996) 99–122

$$\mathbb{C}^{N} = \mathcal{N}(\mu I - A) \oplus \mathcal{R}(\mu I - A), \quad \mathcal{N}(\mu I - A) \subset \mathcal{R}(\lambda I - A) \text{ if } \lambda \neq \mu$$

and

$$\mathcal{N}(\mu I - A) \cap \mathcal{N}(\lambda I - A) = \{0\} \quad \text{if } \lambda \neq \mu.$$

Recall that A is a real transformation and a basis of root vectors $\{e_{j,k}^{p}: 1 \le p \le n, 1 \le j \le n(p), 1 \le k \le m(j, p)\}$, which is closed under conjugation, has been chosen for \mathbb{C}^{N} . Let $\hat{\mathcal{P}}$ denote the set of $\hat{P}: \{1, \ldots, m\} \to \{1, \ldots, n\}$, let $\hat{\mathcal{J}}_{\hat{P}}$ denote the set of $\hat{J}: \{1, \ldots, m\} \to \{1, \ldots, n\}$, let $\hat{\mathcal{J}}_{\hat{P}}$ denote the set of $\hat{J}: \{1, \ldots, m\} \to \{1, \ldots, n(\hat{P})\}$ and $\hat{\mathcal{K}}_{\hat{J},\hat{P}}$ the set of $\hat{K}: \{1, \ldots, m\} \to \{1, \ldots, m(\hat{J}, \hat{P})\}$. Then, by Theorem 3.2, $\{V_{\hat{J},\hat{K}}^{\hat{P}}: \hat{P} \in \hat{\mathcal{P}}, \hat{J} \in \hat{\mathcal{J}}_{\hat{P}}, \hat{K} \in \hat{\mathcal{K}}_{\hat{J},\hat{P}}\}$ is a basis for C_m where

$$V_{\hat{j},\,\hat{K}}^{\hat{P}}(z_1,\,\ldots,z_m) = \prod_{\ell=1}^m \left(e_{\hat{j}(\ell),\,\hat{K}(\ell)}^{\hat{P}(\ell)} \right)^*(z_\ell).$$
(4.11)

With respect to this basis an element $V \in C_m$ has coefficient $\alpha_{\hat{J},\hat{K}}^{\hat{P}}$ defined by

$$\begin{aligned} \alpha_{\hat{j},\hat{K}}^{\hat{P}} &= V\left(e_{\hat{j}(1),\hat{K}(1)}^{\hat{P}(1)},\ldots,e_{\hat{j}(m-1),\hat{K}(m-1)}^{\hat{P}(m-1)},e_{\hat{j}(m),\hat{K}(m)}^{\hat{P}(m)}\right) \\ &= v_{J,K}^{P}\left(e_{\hat{j}(m),\hat{K}(m)}^{\hat{P}(m)}\right), \end{aligned}$$
(4.12)

where here and later P, J, K denote \hat{P}, \hat{J} and \hat{K} , respectively, restricted to $\{1, \ldots, m-1\}$. Therefore, if $\{V_{j,k}^p : p \in \mathcal{P}, j \in \mathcal{J}_p, K \in \mathcal{K}_{J,P}\}$ is given, a function $V \in C_m$ is uniquely determined in terms of the basis (4.11) by the coefficients (4.12).

Now, by Theorem 4.1, $v_{J,K}^P \in \mathcal{N}(\mu_P I - A^*)$, the generalised eigenspace of μ_P as an eigenvalue of A^* , and

$$e^{\hat{P}(m)}_{\hat{J}(m), \hat{K}(m)} \in \mathcal{N}(\lambda_{\hat{P}(m)}I - A) \subset \mathcal{R}(\lambda I - A)$$

for any $\lambda \in \mathbb{C} \setminus \{\lambda_{\hat{P}(m)}\}\)$, where $\mathcal{R}(\lambda I - A)$ denotes the generalised range of $(\lambda I - A)$. In particular, if $\mu_P \neq \lambda_{\hat{P}(m)}$ then

$$e^{\hat{P}(m)}_{\hat{J}(m), \hat{K}(m)} \in \mathcal{R}(\mu_P I - A).$$

Since

$$v_{J,K}^P \in \mathcal{N}(\mu_P I - A^*)$$
 and $\mu_P = -\sum_{j=1}^{m-1} \lambda_{\hat{P}(\ell)}$

it is immediate that

$$\alpha_{\hat{f},\hat{K}}^{\hat{P}} = 0 \quad \text{for all } \hat{P} \text{ with } \sum_{\ell=1}^{m} \lambda_{\hat{P}(\ell)} \neq 0.$$
(4.13)

Theorem 4.2. A real, linear transformation has a non-zero, homogeneous, polynomial invariant of degree m if, and only if, there exist m eigenvalues, $\alpha_1, \ldots, \alpha_m$, of A with

$$\sum_{\ell=1}^m \alpha_\ell = 0.$$

Proof. If no set of *m* eigenvalues of *A* adds up to zero, then $v_{J,K}^P$ is zero for all *P*, *J*, *K*, by Theorem 4.1(d). Therefore if *V* satisfies (4.4) then $V \equiv 0$, by (4.13). Hence *A* has no non-zero, polynomial invariant of degree *m*, by the remark in italics preceding expression (3.15).

Conversely, suppose $\alpha_1, \ldots, \alpha_m$ are eigenvalues of A which add up to zero, and let $\beta_1, \ldots, \beta_{m'}$ be the distinct elements of $\{\alpha_1, \ldots, \alpha_m\}$. If β_i is not real, let $g_i^* \in \ker(\beta_i I - A^*)$. From the definition of $\overline{g_i^*}$ in Section 3, it follows that $\overline{g_i^*} \in \ker(\overline{\beta_i} I - A^*)$. If β_i is real, let $w_i^* \in \ker(\beta_i I - A^*)$ and let $g_i^* = w_i^* + \overline{w_i^*}$. Then $g_i^* \in \ker(\beta_i I - A)$ and $\overline{g_i^*} = g_i^*$ when β_i is real. Moreover, $\{g_i^* : 1 \le i \le m'\}$ is a linearly independent set in $(\mathbb{C}^N)^*$ and hence there exists $\{g_i : 1 \le i \le m'\} \subset \mathbb{C}^N$ with $g_i^*(g_j) = \delta_{ij}$.

Now let

$$f_{\ell}^* = g_i^* \quad \text{if } \alpha_{\ell} = \beta_i, \ 1 \le i \le m$$

and define $V \in C_m$ by

$$V(z_1, ..., z_m) = \prod_{\ell=1}^m f_\ell(z_\ell) + \prod_{\ell=1}^m \overline{f_\ell^*}(z_\ell) = \prod_{\ell=1}^m f_\ell^*(z_\ell) + \overline{\prod_{\ell=1}^m f_\ell^*(\overline{z_\ell})}.$$

It is immediate, from Theorem 3.2(b), that $V \in R_m$. Moreover, for $z_1, \ldots, z_m \in \mathbb{C}^N$,

$$\sum_{\ell=1}^{m} f_1^*(z_1) \dots f_\ell^*(Az_\ell) \dots f_m^*(z_m) = \sum_{\ell=1}^{m} f_1^*(z_1) \dots ((A^* f_\ell^*)(z_\ell)) \dots f_m^*(z_m)$$
$$= \left(\sum_{\ell=1}^{m} \alpha_\ell\right) \prod_{\ell=1}^{m} f_1^*(z_1) \dots f_m^*(z_m) = 0.$$

Hence V satisfies (3.14). Now let

$$z = \sum_{\ell=1}^{m'} g_{\ell} \in \mathbb{C}^N.$$

Then $V(z, z, \ldots, z) = 2$. Now let

$$W(x) = V(x, \ldots, x), \quad x \in \mathbb{R}^N.$$

Then $W \neq 0$, by the closing remark of Section 3, and W is a homogeneous, polynomial invariant of degree m of A.

Remark. In many cases when A has m eigenvalues which sum to zero there are at least two distinct (i.e. linearly independent in the space of real-valued functions on \mathbb{R}^N) polynomial invariants of A. This follows from Theorem 4.7, which is the converse of Theorem 4.1. But there are exceptions. For example, when there is only one set of m eigenvalues which sums

to zero, each element of which has geometric multiplicity one and all but one of which is semi-simple, then there is only one polynomial invariant of A.

Theorem 4.3. Suppose W is an active, polynomial invariant of A of degree $m \ge 2$. If λ_1 is an eigenvalue of A there exist m - 1 eigenvalues of A, not necessarily distinct, such that

$$\sum_{\ell=1}^m \lambda_\ell = 0.$$

Proof. Let $W = \Sigma V, V \in \mathbb{R}_m^{\sigma}$. Let the basis $\{e_{j,k}^p\}$ be chosen as in (4.1). Suppose that λ_1 is an eigenvalue of A with eigenvector e. Now, by the hypothesis that W is active, H_{k-1} holds and therefore $v_{J,K}^P(e) \neq 0$ for some $P \in \mathcal{P}, J \in \mathcal{J}_P, K \in \mathcal{K}_{J,P}$. Suppose $\lambda_1 \neq \mu_P$. Then

$$v_{J,K}^P \in \mathcal{N}(\mu_P I - A^*) \subset \mathcal{R}(\lambda I - A^*) = (\mathcal{N}(\lambda I - A))^{\perp}.$$

Hence $v_{J,K}^P(e) = 0$ which is a contradiction. Hence $\mu_P = \lambda_1$ which proves the result. \Box

For given (J, P)

$$\underline{K}(\ell) \leq K(\ell) \leq \overline{K}(\ell), \quad 1 \leq \ell \leq m-1, \ K \in \mathcal{K}_{J,P},$$

where $\underline{K}, \overline{K} \in \mathcal{K}_{J, P}$ are functions of (J, P) defined by

 $\underline{K}(\ell) = 1, \qquad \overline{K}(\ell) = m(J(\ell), P(\ell)), \quad 1 \le \ell \le m - 1.$

Theorem 4.1 says that $(\mu_P I - A^*)^{\alpha_P} v_{J,K}^P = 0$, where $\alpha_P > 0$ is the ascent of μ_P as an eigenvalue of A. This leads to the following theorem.

Theorem 4.4. Let $P \in \mathcal{P}, J \in \mathcal{J}_P$ and suppose that

$$(m-1) + \alpha_P \le |\overline{K}|.$$

Then $v_{J,\underline{K}}^P = 0.$

Proof. Let $K^{\alpha} \in \mathcal{K}_{J, P}$ be such that $|K^{\alpha}| = (m-1) + \alpha_P$. Such K^{α} exists by hypothesis. Then by (4.7)

$$(\mu_P I - A^*) v_{J, K^{\alpha}}^P = \sum_{\ell=1}^{m-1} v_{J, K^{\alpha}_{\ell}}^P,$$

where either $K_{\ell}^{\alpha}(\ell) = 0$ or $|K_{\ell}^{\alpha}| = |K^{\alpha}| - 1$. Hence, by induction,

$$(\mu_P I - A^*)^{\alpha_P} v_{J, K^{\alpha}}^P = r v_{J, \underline{K}}^P,$$

where r is some positive integer. But $v_{J,\underline{K}}^{P} \in \ker(\mu_{P}I - A^{*})$, by Theorem 4.1(b), whence $v_{J,\underline{K}}^{P} \in \ker(\mu_{P}I - A^{*})^{\alpha_{P}} \cap \operatorname{range}(\mu_{P}I - A^{*})^{\alpha_{P}} = \{0\}$, by definition of α_{P} . This completes the proof.

It is clear from the proof of the preceding theorem that Eq. (4.7) forces many of the $v_{J,K}^P$ to be zero, but it is difficult to give a more systematic statement of a result in that direction. The significance of (4.5) and (4.7) is that they give a necessary condition for (4.4). In Theorem 4.7 we will observe that this is also sufficient.

Theorem 4.5. A linear transformation A has a non-degenerate, homogeneous, polynomial invariant W of even degree $m \ge 4$ if, and only if, it is diagonalisable and all its eigenvalues are imaginary.

Proof. Suppose that the eigenvalues of A, counted according to multiplicity, are $\pm i\alpha_1, \ldots, \pm i\alpha_k$, and possibly 0. Say $e_\ell = a_\ell + ib_\ell$ is an eigenvalue of $i\alpha_\ell, 1 \le \ell \le k$, and if necessary $Af_j = 0, f_j \in \mathbb{R}^N, j = 2k + 1, \ldots, N$. Then $\{a_\ell, b_\ell, f_j, 1 \le \ell \le k, 2k + 1 \le j \le N\}$ is a basis for \mathbb{R}^N and we can choose an inner-product \langle , \rangle relative to which it is orthonormal. Since $Aa_\ell = -\alpha_\ell b_\ell$ and $Ab_\ell = \alpha_\ell a_\ell$ for all $\ell, 1 \le \ell \le k$, there results that $\langle Ax, x \rangle = 0$, $x \in \mathbb{R}^N$. Now for even $m \ge 4$, let $W(x) = \langle x, x \rangle^{m/2}$. Therefore, for $y \in \mathbb{R}^N$,

$$\langle \nabla W(x), y \rangle = m \langle x, x \rangle^{(m-2)/2} \langle x, y \rangle,$$

whence

$$\nabla W(x) \neq 0, x \in \mathbb{R}^N \setminus \{0\}$$
 and $\langle \nabla W(x), Ax \rangle = 0, x \in \mathbb{R}^N$.

Therefore W is a non-degenerate invariant for A which, by its definition, is clearly a homogeneous polynomial of even degree $m \ge 4$.

For the converse, suppose that A has an eigenvalue with real part non-zero. Let β denote the eigenvalue of A whose real part has largest absolute value and let $f \in \mathbb{C}^N$ denote a corresponding eigenvector of A. Then \overline{f} is an eigenvector of A with eigenvalue $\overline{\beta}$. (We do not exclude the possibility that β is real and $\overline{f} = f$.) If λ is any eigenvalue of A and $1 \le k \le m-1$,

$$\operatorname{real}(k\beta + (m-1-k)\overline{\beta} + \lambda) = (m-1)\operatorname{real}\beta + \operatorname{real}\lambda \neq 0$$

since m > 2, because of the choice of β . If W is a polynomial invariant of A of degree $m \ge 4$ let $W = \Sigma V$ where $V \in R_m^{\sigma}$. Therefore, if $\xi \in \mathbb{C}^N$ it follows from Theorem 4.1(d) that

 $V(f,\ldots,f,\bar{f},\ldots,\bar{f},\xi)=0,$

where f appears k times and \overline{f} appears m - 1 - k times. It is now easy to infer from the multi-linearity of V that

$$V(x, x, \ldots, x, \xi) = V(y, y, \ldots, y, \xi) = 0$$

if f = x + iy, for $\xi \in \mathbb{C}^N$. Hence

$$V(x, \ldots, x, z) = V(y, \ldots, y, z) = 0, \quad z \in \mathbb{R}^N,$$

whence $\nabla W(x) = \nabla W(y) = 0$, since $W = \Sigma V$.

This proves that if W is a non-degenerate, polynomial invariant of A of degree m > 2then all the eigenvalues of A are purely imaginary. Now we must prove that they are semisimple. Let i γ be an eigenvalue of A of largest ascent, and let g = u + iv be a corresponding eigenvector. Suppose the ascent of i γ is $\alpha \ge 2$. Let $P \in \mathcal{P}$ and $J \in \mathcal{J}_P$ be chosen so that for $k, 1 \le k \le m - 1$

$$\lambda_{P(\ell)} = i\gamma \quad \text{and} \quad e_{J(\ell), 1}^{P(\ell)} = f, \quad 1 \le \ell \le k,$$

$$\lambda_{P(\ell)} = -i\gamma \quad \text{and} \quad e_{J(\ell), 1}^{P(\ell)} = \bar{f}, \quad k+1 \le \ell \le m-1.$$

Note that since the ascent of the eigenvalues $i\gamma$ and $-i\gamma$ are equal,

 $|\overline{K}| = \alpha(m-1).$

Moreover, α is the largest ascent of any eigenvalue of A and hence either $\mu_P = (2k - m + 1)\gamma$ i is not an eigenvalue of A or it has ascent $\alpha_P \leq \alpha$. Since $m \geq 3$ and $\alpha \geq 2$

$$|K| = \alpha(m-1) = \alpha + \alpha(m-2) \ge \alpha_P + 2(m-2) \ge \alpha_P + m - 1.$$

Therefore, by Theorem 4.3, for $1 \le k \le m - 1$,

 $V(f,\ldots,f,\bar{f},\ldots,\bar{f},z)=0, \quad z\in\mathbb{C}^N,$

where f and \overline{f} appear k and m - 1 - k times, respectively. The multi-linearity of V now gives

$$V(u, \ldots, u, z) = V(v, v, \ldots, v, z) = 0, \quad z \in \mathbb{R}^N.$$

Therefore

$$\nabla W(u) = \nabla W(v) = 0,$$

since $W = \Sigma V$, and this contradicts the non-degeneracy of W.

This completes the proof.

Remarks. The proof that when W is non-degenerate all the eigenvalues of A are purely imaginary generalises somewhat to yield a weaker result under weaker hypotheses: if W satisfies H_k for some $k < \frac{1}{2}m$ and is a polynomial invariant of A of degree m, then all the eigenvalues of A are imaginary.

The next theorem has, as a special case, the result that if a non-zero, imaginary eigenvalue with largest absolute value of a non-singular transformation A is simple, then A does not have a pair of strictly independent first integrals of any degree. Note that the hypotheses of parts (e), (f) below are not mutually exclusive.

Theorem 4.6. Suppose that A is a real, linear transformation on \mathbb{R}^N .

(a) If A has a non-degenerate, polynomial invariant of any degree $m \ge 3$ then all its eigenvalues are imaginary and semi-simple.

- (b) If A has a non-degenerate, polynomial invariant of odd degree $m \ge 3$, then A is singular.
- (c) Suppose A is non-singular and has a non-degenerate, polynomial invariant. Then N is even.
- (d) Each component of a strictly independent pair of homogeneous polynomials is nondegenerate and both have odd, or even, degrees.
- (e) If 0 is a simple eigenvalue of $A \neq 0$, then A does not have a strictly independent pair of polynomial invariants of odd degrees $m \ge 3$.
- (f) If $\pm i\gamma, \gamma \in \mathbb{R}$, are the eigenvalues of $A \neq 0$ of largest absolute value and are simple, then A does not have a strictly independent set of polynomial invariants of even degrees.

Proof

(a) An examination of the second half of the proof of Theorem 4.5 yields the required result if $m \ge 3$ is arbitrary.

(b) Let $\pm i\gamma \neq 0$ be the eigenvalues of A of largest absolute value and suppose that $Af = i\gamma f$, where f = u + iv. (This is possible by part (a).) Then, for any k, $1 \le k \le m - 1$,

$$ik\gamma + i(m-1-k)(-i\gamma) = i(2k-m+1)\gamma \not\in -\sigma(A)$$

if $0 \notin \sigma(A)$, since 2k - m + 1 is even for all k and i γ is the eigenvalue of largest absolute value. As in the proof of Theorem 4.5, it follows that if $N = \Sigma V, V \in R_m^{\sigma}$, then

$$V(u, u, \ldots, u, z) = V(v, v, \ldots, v, z) = 0, \quad z \in \mathbb{C}^N.$$

Hence $\nabla W(a) = \nabla W(v) = 0$, which contradicts the non-degeneracy of W.

(c) Suppose A is non-singular and W is a non-degenerate, polynomial invariant for A. Then

$$\pm \lambda A x + (1 - \lambda) \nabla W(x) \neq 0, \quad x \in \mathbb{R}^N, \quad ||x|| = 1, \ \lambda \in [0, 1],$$
(4.14)

because $\langle \nabla W(x), Ax \rangle = 0, x \in \mathbb{R}^N$. Hence (4.14) defines an admissible homotopy for Brouwer degree on the unit ball Ω . Hence

$$\deg(\Omega, A, 0) = \deg(\Omega, \nabla W, 0) = \deg(\Omega, -A, 0).$$

Since $deg(\Omega, A, 0) = sign(Det A)$, this implies that N is even.

(d) Suppose W_1, W_2 is a strictly independent pair of polynomials. Then

$$\lambda \nabla W_1(x) + (1 - \lambda) \nabla W_2(x) \neq 0, \quad x \in \mathbb{R}^N, \quad ||x|| = 1, \ \lambda \in [0, 1].$$
(4.15)

When $\lambda = 0, 1$ we find that both W_1 and W_2 are non-degenerate. Also, (4.15) defines an admissible homotopy in the sense of Brouwer degree on the unit ball Ω in \mathbb{R}^N and consequently

$$\deg(\Omega, \nabla W_1, 0) = \deg(\Omega, \nabla W_2, 0).$$

However, deg(Ω , f, 0), when it is defined, is odd for an odd function f, and even for an even, homogeneous function f [7, Ch. II, Theorem 4.1 and Ch. IV, Section 2]. Since ∇W_1

is even when W_1 is odd and vice versa for W_2 , this proves that W_1 and W_2 both have odd, or even, degrees.

(e) Suppose that $W = \Sigma V, V \in R_m^{\sigma}$, is any non-degenerate, polynomial invariant of A of odd degree $m \ge 3$ and let 0 be a simple eigenvalue of A with $Au = 0, u \in \mathbb{R}^N \setminus \{0\}$. Since all the eigenvalues of A are imaginary, by part (a), let $\pm i\gamma$ be the eigenvalues of largest absolute value and suppose $Af = i\gamma f, f = a + ib$. Then for any $k, 1 \le k \le m - 1$,

$$ki\gamma + (m-1-k)(-i\gamma) \in -\sigma(A),$$

if, and only if, 2k = m - 1, since 2k - m + 1 is even and $\pm i\gamma$ are the eigenvalues with largest absolute value. Therefore, if ξ is any generalised eigenvector of A corresponding to a non-zero eigenvalue we find, from (4.13), that

$$V(f,\ldots,f,\bar{f},\ldots,\bar{f},\xi)=0,$$

where f and \overline{f} appear k and m - 1 - k times, respectively. Hence, by the multi-linearity of V,

$$V(a, \ldots, a, \xi) = V(b, \ldots, b, \xi) = 0$$
 for all such ξ .

Therefore for all x in the real subspace which is invariant under A and complementary to $span\{u\}$,

$$V(a, a, \ldots, a, x) = \langle \nabla W(a), x \rangle = 0.$$

In other words, $\nabla W(a)$ lies in a one-dimensional space determined by A. Since this is true for any polynomial invariant W of A of odd degree, and since $a \neq 0$ is independent of W, the result is proved.

(f) Suppose W_1 and W_2 form a strictly independent pair of polynomial invariants of even degree. If both are quadratic then the result is proved in [3], Lemma 1.1. If one of them has higher degree then all the eigenvalues of A are imaginary and semi-simple. We suppose this to be the case henceforth and adopt the hypothesis that $\pm i\gamma$, the eigenvalues of largest absolute value, are simple.

Suppose that $Af = i\gamma f$, where f = u + iv. Then the choice of $i\gamma$ means that

$$ki\gamma + (m-1-k)(-i\gamma) \notin -\sigma(A) \setminus \{\pm i\gamma\}, k \in \mathbb{Z}.$$

Let $W = \Sigma V, V \in R_m^{\sigma}, m \ge 2$, be any non-degenerate, homogeneous, polynomial invariant of even degree *m* of *A*, and let ξ be any generalised eigenvector of *A* corresponding to any eigenvalue of *A* other than $\pm i\gamma$. Then, by (4.13)

$$V(f,\ldots,f,\bar{f},\ldots,\bar{f},\xi)=0,$$

where f and \overline{f} appear k and m - k - 1 times, respectively. Hence, by the multi-linearity of V,

$$V(u, u, \ldots, u, \xi) = 0$$

for all such ξ . Let $\mathbb{R}^N = E \oplus$ span $\{u, v\}$ where E is a real, invariant subspace for A. Then since $W = \Sigma V$ and V is symmetric, we have shown that

$$\langle \nabla W(u), e \rangle = 0$$
 for all $e \in E$.

Also, since $Au = -i\gamma v$, $\gamma \neq 0$, and $\langle \nabla W(u), Au \rangle = 0$, we find that

$$\langle \nabla W(u), x \rangle = 0$$
 if $x \in \text{span}\{E, v\}$.

But span $\{E, v\}$ has real co-dimension 1, and is determined only by the eigenspaces of A. Hence $\nabla W(u)$ lies in a one-dimensional space determined by A. Since u and span $\{v, E\}$ are independent of W, this proves the required result.

Finally, for completeness, we prove the converse of Theorem 4.1.

Theorem 4.7. Suppose that $\{f_{J,K}^P: P \in \mathcal{P}, J \in \mathcal{J}_P, K \in \mathcal{K}_{J,P}\} \subset (\mathbb{C}^N)^*$ is any solution of (4.5) and (4.7). Let

$$V(z_1, \ldots, z_m) = \sum \alpha_{\hat{j}, \hat{K}}^{\hat{P}} V_{\hat{j}, \hat{K}}^{\hat{P}}(z_1, \ldots, z_m), \qquad (4.16)$$

where

$$\alpha_{\hat{J},\,\hat{K}}^{\hat{P}} = f_{J,\,K}^{P} \left(e_{\hat{J}(m),\,\hat{K}(m)}^{\hat{P}(m)} \right) \quad and \quad (P,J,K) = (\hat{P},\,\hat{J},\,\hat{K}) |_{\{1,\,2,\,\dots,\,m-1\}} \,. \tag{4.17}$$

Then $V \in R_m$ and V satisfies (4.4).

Proof. Clearly V defined by (4.13) is an element of C_m . To see that it is in R_m we use Theorem 3.2(c). Now

$$\overline{\alpha_{\hat{j},\hat{K}}^{\hat{P}}} = \overline{f_{J,K}^{P} \left(e_{\hat{j}(m),\hat{K}(m)}^{\hat{P}(m)}\right)}, \quad \text{by (4.14)}$$

$$= f_{J,K}^{\overline{P}} \left(\overline{e_{\hat{j}(m),\hat{K}(m)}^{\hat{P}(m)}}\right), \quad \text{by (3.5)}$$

$$= f_{J,K}^{\overline{P}} \left(e_{\hat{j}(m),\hat{K}(m)}^{\hat{P}(m)}\right), \quad \text{by definition of } \overline{\hat{P}}$$

$$= \alpha_{\hat{j},\hat{K}}^{\overline{\hat{P}}} \quad \text{since } \overline{P} = \overline{\hat{P}} \mid_{\{1,...,m-1\}}.$$

Since $\mathcal{J}_P = \mathcal{J}_{\overline{P}}, \mathcal{K}_{J,P} = \mathcal{K}_{J,\overline{P}}$ it is immediate that the criterion in Theorem 3.2(c) is satisfied and hence $V \in R_m$.

Now to see that (4.4) is satisfied. Since $\mu_P = -\sum_{\ell=1}^{m-1} \lambda_{P(\ell)}$ we find, by (4.7), that

$$\left\{\sum_{\ell=1}^{m-1} \lambda_{P(\ell)} f_{J,K}^{P} + \sum_{\ell=1}^{m-1} f_{J,K_{\ell}}^{P} + f_{J,K}^{P} \circ A\right\} (z) = 0, \quad z \in \mathbb{C}^{N}.$$

In particular, if $\hat{P} \in \hat{\mathcal{P}}, \hat{J} \in \hat{\mathcal{J}}_{\hat{P}}, \hat{K} \in \hat{\mathcal{K}}_{\hat{J},\hat{P}}, z = e_{\hat{J}(m),\hat{K}(m)}^{\hat{P}(m)}$ and if $(P, J, K) = (\hat{P}, \hat{J}, \hat{K})|_{\{1, \dots, m-1\}}$, then

$$\left(\sum_{\ell=1}^{m-1} \lambda_{P(\ell)} f_{J,K}^{P} + \sum_{\ell=1}^{m-1} f_{J,K_{\ell}}^{P} + f_{J,K}^{P} \circ A\right) \left(e_{\hat{J}(m),\hat{K}(m)}^{\hat{P}(m)}\right) = 0.$$
(4.18)

However, by definition of V,

$$V\left(e_{\hat{j}(1),\hat{K}(1)}^{\hat{P}(1)},\ldots,e_{\hat{j}(m),\hat{K}(m)}^{\hat{P}(m)}\right)=f_{J,K}^{P}\left(e_{\hat{j}(m),\hat{K}(m)}^{\hat{P}(m)}\right)$$

and since $Ae_{\hat{j}(\ell), \hat{K}(\ell)}^{\hat{p}(\ell)} = \lambda_{P(\ell)}e_{\hat{j}(\ell), \hat{K}(\ell)}^{\hat{p}(\ell)} + e_{\hat{j}(\ell), \hat{K}(\ell)-1}^{\hat{p}(\ell)}$, (4.15) can be re-written

$$\sum_{\ell=1}^{m} V\left(e^{\hat{P}(1)}_{\hat{J}(1), \hat{K}(1)}, \dots, Ae^{\hat{P}(\ell)}_{\hat{J}(\ell), \hat{K}(\ell)}, \dots, e^{\hat{P}(m)}_{\hat{J}(m), \hat{K}(m)}\right) = 0$$

for all $\hat{P} \in \hat{\mathcal{P}}, \hat{J} \in \hat{\mathcal{J}}_{\hat{P}}, \hat{K} \in \hat{\mathcal{K}}_{\hat{J}, \hat{P}}$. But

$$\sum_{\ell=1}^{m} V(z_1, \dots, Az_{\ell}, \dots, z_m) = \sum_{\ell=1}^{m} \sum_{\hat{P} \in \hat{\mathcal{P}}, \ \hat{J} \in \hat{\mathcal{J}}_{\hat{P}}, \ \hat{K} \in \hat{\mathcal{K}}_{\hat{J}, \ \hat{P}}} \alpha_{\hat{J}, \ \hat{K}}^{\hat{P}} V_{\hat{J}, \ \hat{K}}^{\hat{P}} \left(e^{\hat{P}(1)}_{\hat{J}(1), \ \hat{K}(1)}, Ae^{\hat{P}(\ell)}_{\hat{J}(\ell), \ \hat{K}(\ell)}, e^{\hat{P}(m)}_{\hat{J}(m), \ \hat{K}(m)} \right) = 0.$$

This shows that V satisfies (4.4). This completes the proof.

Acknowledgements

Professor Dancer wishes to acknowledge the support of a United Kingdom SERC Visiting Fellowship GR J 98158 during the tenure of which this paper was completed.

References

- [1] N.G. Chetayev, The Stability of Motion (Pergamon Press, Oxford, 1961).
- [2] E.N. Dancer and J.F. Toland, A degree theory for orbits of prescribed period of flows with a first integral, Proc. London Math. Soc. 60 (3) (1990) 549–580.
- [3] E.N. Dancer and J.F. Toland, Equilibrium states in the degree theory of periodic orbits with a first integral, Proc. London Math. Soc. 63 (1991) 569–594.
- [4] E.N. Dancer and J.F. Toland, The index change and global bifurcation for flows with a first integral, Proc. London Math. Soc. 66 (1993) 539–567.
- [5] I. Ekeland, Convexity Methods in Hamiltonian Mechanics (Springer, Berlin, 1990).
- [6] E. Hille and R.S. Phillips, Functional analysis and semi-groups, in: Colloquium Publications, Vol. XXXI (American Mathematical Society, Providence, RI, 1957).
- [7] M.A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations (Pergamon Press, Oxford, 1963).
- [8] K.R. Meyer and G.R. Hall, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem (Springer, New York, 1992).
- [9] V. Yakubovich and V. Starzhinskii, *Linear Differential Equations with Periodic Coefficients*, Vols. I and II (Halstead Press, Wiley, New York, 1975).